Dynamics of Finite Momentum Bose Polarons MASSACHUSETTS INSTITI ITF of TECHNOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Finite Momentum Bose Polarons MASSACHUSETTS INSTITI ITF of TECHNOLOGY Dynamics of Finite Momentum Bose Polarons MASSACHUSETTS INSTITI ITF OF TECHNOLOGY Kushal Seetharam JUN 1 3 B.S.E., Duke University (2014) LIBRARIES Submitted to the ARCHIVES Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 @2019. Kushal Seetharam. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ..... Signature redacted ...................... Department of Electrical Engineering and Computer Science Signature redacted May 23, 2019 C ertified by :............ ............................. Eugene Demler Professor of Physics Supervisor Signature redacted Thesis A ccepted by:............. ........................... Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Dynamics of Finite Momentum Bose Polarons by Kushal Seetharam Submitted to the Department of Electrical Engineering and Computer Science on May 23, 2019 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering and Computer Science Abstract We study the behavior of a finite-momentum impurity immersed in a weakly interacting Bose-Einstein con- densate (BEC) of ultra-cold atoms near an interspecies Feshbach resonance. Using the time-dependent variational approach, we study both ground state properties and quench dynamics of the system after a sudden immersion of the impurity into the BEC. We find evidence of a ground state phase transition when the impurity has a velocity greater than that of the sound velocity (Landau critical velocity) associated with Bogoliubov quasiparticle excitations of the BEC. As we cross from the subsonic regime to the supersonic regime, we get a breakdown of the polaron quasiparticle description of the system, emission of Cherenkov phonons, and a sound-like dispersion of the system. This phase transition manifests in several ways during real-time dynamics of the system and showcases a rich interplay between polaronic physics and Cherenkov physics. One key signature, dissipation in the the supersonic regime, can be seen in experimental protocols where the impurity and BEC are made to move relative to each other through an external force. We sug- gest one such experimental protocol to measure the polaron's effective mass as long as the impurities are subsonic. While the measurement scheme becomes error-prone due to dissipation when the impurities are allowed to become supersonic, this sensitivity suggests a way to experimentally probe the Cherenkov physics of supersonic impurities immersed in a BEC. Thesis Supervisor: Eugene Demler Title: Professor of Physics 3 4 Contents 1 Introduction 7 2 The System 9 2.1 Microscopic Model ......... .......................................... 9 2.2 Equations of M otion ................ ................ ......... 14 2.3 Observables and Distribution Functions ............... ............... 15 3 Ground State 17 4 Real-time Dynamics 20 5 Experimental Connection 25 6 Summary 26 A Local Density Approximation (LDA) 27 A.1 External Potentials and Forces ............. ................ ...... 27 A.2 Inhomogeneous BEC .............. ........................... 27 A.3 Impurity Potentials/Forces Included in Simulation ....................... 28 A.3.1 Impurity's confining potential ................... 28 A.3.2 Polaron energy potential . ........... .......... .......... ... 28 5 List of Figures 3.1 Ground state energy. The energy is initially quadratic (subsonic region) and then becomes linear at a critical momentum (Cherenkov region). (a) Ground state energy. (b) First deriva- tive of ground state energy. (c) Second derivative of ground state energy. (d) Average impurity velocity and polaron velocity. Both are equal to each other and the speed of sound regardless of interaction strength. (e) Mass enhancement of polaron. The effective mass increases with interaction strength. .......... .............................. 17 3.2 Phonon Number. (a) After the transition, there is a large increase in number of phonon excitations. (b) If we increase the infrared cutoff of the momentum grid in numerics, the number of phonons decreases as the system puts weight in the lowest energy modes accessible, which now occur at larger momentum. ............................... 18 3.3 Impurity speed distribution. (a) Example distribution showing coherent delta peak (red line) and incoherent part (black). The blue line shows the full-width half-max (FWHM) of the incoherent part. (b) Quasiparticle residue. Drops to zero at the transition. (c) FWHM of incoherent part. The sharp dip at the transition indicates that the incoherent part of the impurity speed distribution gets sharply peaked at the critical momentum ........... 18 3.4 Ground state phase diagram. The critical momentum increases with interaction strength and is related to polaronic mass enhancement ........................... 19 3.5 Quasiparticle residue in subsonic region. The residue drops towards zero as we increase interaction strength. .......... .............................. 20 4.1 Observables. (a) Loschmidt echo. Curves from the subsonic region saturate to a finite value at long times. Curves in the Cherenkov region decay to zero as a power-law at long times. (b) Average impurity momentum. Curves from the subsonic region saturate to different subsonic values at long times. Curves in the Cherenkov region all approach the speed of sound at long tim es. ....... ............... ................ ........... 21 4.2 Exponents characterizing long-time behavior observables. The power-law decay only starts after a critical momentum which depends on interaction strength. ............ 22 4.3 Final impurity speed. For weak interactions, the impurity ends up at the speed of sound if we start it supersonic. For strong interactions, the impurity will always end up subsonic regardless of its initial velocity. ................ ................... 22 4.4 Final Loschmidt echo. For all interaction strengths, there is a range of initial impurity velocities where the the long-time dynamical overlap is nonzero followed by a range of ini- tial impurity velocities where the long-time dynamical overlap is zero. The location of the discontinuous transition between these two regions depends on interaction strength and mass ratio............... ... ........................................... 23 5.1 Effective mass protocol fully in subsonic region. (a) Average impurity speed. The impurity velocity increases linearly while the constant external force is applied. (b) Mass enhancement. We 'measure' a larger effective mass as we increase interaction strength. .... 25 5.2 Effective mass protocol partially in supersonic region. (a) Average impurity speed. We see curvature corresponding to dissipation as the external force pushes the impurity past the speed of sound. (b) Mass enhancement. There is error in the 'measured' effective mass even at weak interactions. .. ............... ................ ..... 26 6 1 Introduction The non-equilibrium dynamics of quantum many-body systems is amongst the most actively researched areas of modern physics. One of the most prototypical problems that underlies the physics behind several such systems is that of the quantum impurity, where an impurity degree of freedom interacts with a surrounding many-body system. In certain cases, we can describe this scenario using the notion of a polaron quasiparticle which is adiabatically connected to the free impurity. The polaron describes an impurity that has been dressed by a cloud of excitations of the surrounding bath which, in equilibrium, results in a renormalization of its mass, energy, and other properties. A toy analogy can be made to a ball rolling around a rubber sheet; the ball creates a deformation in the sheet that moves along with the ball and modifies its motion. The ball represents the impurity and the deformation in the sheet represents the cloud of particles in the many-body bath that dresses the impurity. Depending on whether the excitations dressing the impurity are bosonic or fermionic, we call the resulting quasiparticle a Bose polaron or a Fermi polaron. Landau introduced the original manifestation of the polaron in 1933 when he examined an electron getting trapped by a crystal lattice [18]. The codification of an electron trapped by a crystal lattice as a phonon-dressed quasiparticle called a polaron was done by Pekar in 1946 and then further developed in a joint paper between Pekar and Landau in 1948 [26, 17]. While the initial treatment of the polaron was in the strong-coupling regime, it was soon extended to the weak coupling regime by Frohlich [5]. Since these original investigations, it has been discovered that polaronic physics is related to electron mobility in semiconductors, charge transport in organic solar cells, mechanisms behind high- Tc superconductivity, and many other salient systems [2, 6, 13, 27]. Polarons also serve as an archetype upon which we can build an understanding of other types of quantum impurity problems [29]. In modern times, ultracold atomic gases have provided an experimental platform that allow a much more detailed probing of polaronic physics. Control of host atom species allows specification of fermionic or bosonic statistics
Recommended publications
  • Polarons Get the Full Treatment
    VIEWPOINT Polarons Get the Full Treatment A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. by Chris G. Van de Walle∗ When an electron travels through a solid, its negative charge exerts an attractive force on the surrounding posi- n 1933, theoretical physicist Lev Landau wrote a tively charged atomic nuclei. In response, the nuclei move 500-word article discussing how an electron traveling away from their equilibrium positions, trying to reach for through a solid might end up trapped by a distortion of the electron. The resulting distortion of the crystalline lat- the surrounding lattice [1]. Those few lines marked the tice creates a lump of positive charge that tags along with Ibeginning of the study of what we now call polarons, some the moving electron. This combination of the electron and of the most celebrated “quasiparticles” in condensed-matter the lattice distortion—which can be seen as an elementary physics—essential to understanding devices such as organic particle moving through the solid—is a polaron [4, 5]. In light-emitting-diode (OLED) displays or the touchscreens of the language of condensed-matter physics, the polaron is a smart devices. Until now, researchers have relied on two quasiparticle formed by “dressing” an electron with a cloud approaches to describe these complex quasiparticles: ide- of phonons, the quantized vibrations of the crystal lattice. alized mathematical models and numerical methods based Polarons may be large or small—depending on how the size on density-functional theory (DFT).
    [Show full text]
  • Large Polaron Formation and Its Effect on Electron Transport in Hybrid
    Large Polaron Formation and its Effect on Electron Transport in Hybrid Perovskite Fan Zheng and Lin-wang Wang∗ 1 Joint Center for Artificial Photosynthesis and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. E-mail: [email protected] 2 Abstract 3 Many experiments have indicated that large polaron may be formed in hybrid per- 4 ovskite, and its existence is proposed to screen the carrier-carrier and carrier-defect 5 scattering, thus contributing to the long lifetime for the carriers. However, detailed 6 theoretical study of the large polaron and its effect on carrier transport at the atomic 7 level is still lacking. In particular, how strong is the large polaron binding energy, 8 how does its effect compare with the effect of dynamic disorder caused by the A-site 9 molecular rotation, and how does the inorganic sublattice vibration impact the mo- 10 tion of the large polaron, all these questions are largely unanswered. In this work, 11 using CH3NH3PbI3 as an example, we implement tight-binding model fitted from the 12 density-functional theory to describe the electron large polaron ground state and to 13 understand the large polaron formation and transport at its strong-coupling limit. We 14 find that the formation energy of the large polaron is around -12 meV for the case 15 without dynamic disorder, and -55 meV by including dynamic disorder. By perform- 16 ing the explicit time-dependent wavefunction evolution of the polaron state, together + − 17 with the rotations of CH3NH3 and vibrations of PbI3 sublattice, we studied the diffu- 18 sion constant and mobility of the large polaron state driven by the dynamic disorder 1 19 and the sublattice vibration.
    [Show full text]
  • Arxiv:2006.13529V2 [Quant-Ph] 1 Jul 2020 Utrwith Ductor Es[E Fig
    Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions Oliver Kaestle,1, ∗ Ying Hu,2, 3 Alexander Carmele1 1Technische Universit¨at Berlin, Institut f¨ur Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Hardenbergstrae 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Dated: July 28, 2021) We investigate the dynamical interplay between topological state of matter and a non-Markovian dissipation, which gives rise to a new and crucial time scale into the system dynamics due to its quan- tum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynam- ics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of Majorana correlation. Exploring topological properties out of equilibrium is stantial preservation of topological properties far from central in the effort to realize,
    [Show full text]
  • Polaron Formation in Cuprates
    Polaron formation in cuprates Olle Gunnarsson 1. Polaronic behavior in undoped cuprates. a. Is the electron-phonon interaction strong enough? b. Can we describe the photoemission line shape? 2. Does the Coulomb interaction enhance or suppress the electron-phonon interaction? Large difference between electrons and phonons. Cooperation: Oliver Rosch,¨ Giorgio Sangiovanni, Erik Koch, Claudio Castellani and Massimo Capone. Max-Planck Institut, Stuttgart, Germany 1 Important effects of electron-phonon coupling • Photoemission: Kink in nodal direction. • Photoemission: Polaron formation in undoped cuprates. • Strong softening, broadening of half-breathing and apical phonons. • Scanning tunneling microscopy. Isotope effect. MPI-FKF Stuttgart 2 Models Half- Coulomb interaction important. breathing. Here use Hubbard or t-J models. Breathing and apical phonons: Coupling to level energies >> Apical. coupling to hopping integrals. ⇒ g(k, q) ≈ g(q). Rosch¨ and Gunnarsson, PRL 92, 146403 (2004). MPI-FKF Stuttgart 3 Photoemission. Polarons H = ε0c†c + gc†c(b + b†) + ωphb†b. Weak coupling Strong coupling 2 ω 2 ω 2 1.8 (g/ ph) =0.5 (g/ ph) =4.0 1.6 1.4 1.2 ph ω ) 1 ω A( 0.8 0.6 Z 0.4 0.2 0 -8 -6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 ω ω ω ω / ph / ph Strong coupling: Exponentially small quasi-particle weight (here criterion for polarons). Broad, approximately Gaussian side band of phonon satellites. MPI-FKF Stuttgart 4 Polaronic behavior Undoped CaCuO2Cl2. K.M. Shen et al., PRL 93, 267002 (2004). Spectrum very broad (insulator: no electron-hole pair exc.) Shape Gaussian, not like a quasi-particle.
    [Show full text]
  • Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized.
    [Show full text]
  • Polaron Physics Beyond the Holstein Model
    Polaron physics beyond the Holstein model by Dominic Marchand B.Sc. in Computer Engineering, Universit´eLaval, 2002 B.Sc. in Physics, Universit´eLaval, 2004 M.Sc. in Physics, The University of British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Physics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2011 c Dominic Marchand 2011 Abstract Many condensed matter problems involve a particle coupled to its environment. The polaron, originally introduced to describe electrons in a polarizable medium, describes a particle coupled to a bosonic field. The Holstein polaron model, although simple, including only optical Einstein phonons and an interaction that couples them to the electron density, captures almost all of the standard polaronic properties. We herein investigate polarons that differ significantly from this behaviour. We study a model with phonon-modulated hopping, and find a radically different behaviour at strong couplings. We report a sharp transition, not a crossover, with a diverging effective mass at the critical coupling. We also look at a model with acoustic phonons, away from the perturbative limit, and again discover unusual polaron properties. Our work relies on the Bold Diagrammatic Monte Carlo (BDMC) method, which samples Feynman diagrammatic expansions efficiently, even those with weak sign problems. Proposed by Prokof’ev and Svistunov, it is extended to lattice polarons for the first time here. We also use the Momentum Average (MA) approximation, an analytical method proposed by Berciu, and find an excellent agreement with the BDMC results. A novel MA approximation able to treat dispersive phonons is also presented, along with a new exact solution for finite systems, inspired by the same formalism.
    [Show full text]
  • Room Temperature and Low-Field Resonant Enhancement of Spin
    ARTICLE https://doi.org/10.1038/s41467-019-13121-5 OPEN Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets R. Ramos 1*, T. Hioki 2, Y. Hashimoto1, T. Kikkawa 1,2, P. Frey3, A.J.E. Kreil 3, V.I. Vasyuchka3, A.A. Serga 3, B. Hillebrands 3 & E. Saitoh1,2,4,5,6 1234567890():,; Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observe in fi Lu2BiFe4GaO12 an enhancement 700% greater than that in a YIG lm and at very low magnetic fields around 10À1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping, with potential applications for spintronic devices. 1 WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 2 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 3 Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany. 4 Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan. 5 Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan.
    [Show full text]
  • PHYSICAL REVIEW B 102, 245115 (2020) Memory-Critical Dynamical
    PHYSICAL REVIEW B 102,245115(2020) Memory-critical dynamical buildup of phonon-dressed Majorana fermions Oliver Kaestle ,1,* Yue Sun, 2,3 Ying Hu,2,3 and Alexander Carmele 1 1Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Received 2 July 2020; revised 24 November 2020; accepted 24 November 2020; published 11 December 2020) We investigate the dynamical interplay between the topological state of matter and a non-Markovian dis- sipation, which gives rise to a crucial timescale into the system dynamics due to its quantum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of the topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of the Majorana correlation. DOI: 10.1103/PhysRevB.102.245115 I. INTRODUCTION phonon-renormalized Hamiltonian parameters (see Fig. 1). In contrast to Markovian decoherence that typically destroys Exploring topological properties out of equilibrium is cen- topological features for long times, we show that a finite tral in the effort to realize, probe, and exploit topological states quantum memory allows for substantial preservation of topo- of matter in the laboratory [1–15].
    [Show full text]
  • The Polaron Hydrogenic Atom in a Strong Magnetic Field A
    THE POLARON HYDROGENIC ATOM IN A STRONG MAGNETIC FIELD ADissertation Presented to The Academic Faculty By Rohan Ghanta In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mathematics Georgia Institute of Technology August 2019 Copyright c Rohan Ghanta 2019 THE POLARON HYDROGENIC ATOM IN A STRONG MAGNETIC FIELD Approved by: Dr. Michael Loss, Advisor Dr. Evans Harrell School of Mathematics School of Mathematics Georgia Institute of Technology Georgia Institute of Technology Dr. Federico Bonetto Dr. Brian Kennedy School of Mathematics School of Physics Georgia Institute of Technology Georgia Institute of Technology Dr. Rafael de la Llave Date Approved: May 2, 2019 School of Mathematics Georgia Institute of Technology “An electron moving moving with its accompanying distortion of the lattice has sometimes been called a polaron. It has an e↵ective mass higher than that of the electron. We wish to compute the energy and e↵ective mass of such an electron. A summary giving the present state of this problem has been given by Fr¨ohlich. He makes simplifying assumptions, such that the crystal lattice acts like a dielectric medium, and that all the important phonon waves have the same frequency. We will not discuss the validity of these assumptions here, but will consider the problem described by Fr¨ohlich as simply a mathematical problem.” R.P. Feynman, “Slow Electrons in a Polar Crystal,” (1954). “However, Feynman’s method is rather complicated, requiring the services of the Massachusetts Institute of Technology Whirlwind computer, and moreover su↵ers from a lack of directness. It is not clear how to relate his method to more pedestrian manipulations of Hamiltonians and wave functions.” E.H.
    [Show full text]
  • Basic Theory and Phenomenology of Polarons
    Basic theory and phenomenology of polarons Steven J.F. Byrnes Department of Physics, University of California at Berkeley, Berkeley, CA 94720 December 2, 2008 Polarons are defined and discussed at an introductory, conceptual level. The important subcategories of polarons–large polarons, small polarons, and bipolarons–are considered in turn, along with the basic formulas and qualitative behaviors. Properties that affect electrical transport are emphasized. I. Introduction In a typical covalently-bonded crystal (such as typical Group IV or III-V semiconductors), electrons and holes can be characterized to an excellent approximation by assuming that they move through a crystal whose atoms are frozen into place. The electrons and holes can scatter off phonons, of course, but when no phonons are present (say, at very low temperature), all ionic displacement is ignored in describing electron and hole transport and properties. This approach is inadequate in ionic or highly polar crystals (such as many II-VI semiconductors, alkali halides, oxides, and others), where the Coulomb interaction between a conduction electron and the lattice ions results in a strong electron-phonon coupling. In this case, even with no real phonons present, the electron is always surrounded by a cloud of virtual phonons. The cloud of virtual phonons corresponds physically to the electron pulling nearby positive ions towards it and pushing nearby negative ions away. The electron and its virtual phonons, taken together, can be treated as a new composite particle, called a polaron . (In particular, the above describes an electron polaron ; the hole polaron is defined analogously. For brevity, this paper will generally discuss only electron polarons, and it will be understood that hole polarons are analogous.) 1 The concept of a polaron was set forth by Landau in 1933 [1,2].
    [Show full text]
  • A Feynman Path-Integral Calculation of the Polaron Effective Mass. Manmohan Singh Chawla Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 A Feynman Path-Integral Calculation of the Polaron Effective Mass. Manmohan Singh Chawla Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Chawla, Manmohan Singh, "A Feynman Path-Integral Calculation of the Polaron Effective Mass." (1971). LSU Historical Dissertations and Theses. 1910. https://digitalcommons.lsu.edu/gradschool_disstheses/1910 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-20,582 CHAWLA, Manmohan Singh, 1940- A FEYNMAN PATH-INTEGRAL CALCULATION OF THE POLARON EFFECTIVE MASS. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 Physics, solid state ■i University Microfilms, A XEROX Company, Ann Arbor, Michigan I THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED A FEYNMAN PATH-INTEGRAL CALCULATION OF THE POLARON EFFECTIVE MASS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics and Astronomy by Manmohan Singh Chawla B.Sc., University of Rajasthan, 1960 M.Sc., University of Rajasthan, 1963 A. Inst. N.P., Calcutta University, 1965 January, 1971 PLEASE NOTE: Some pages have small and indistinct type. Filmed as received. University Microfilms ACKNOWLEDGEMENTS The author wishes to express hi's appreciation to Dr.
    [Show full text]
  • Exploring Exciton and Polaron Dominated Photophysical Phenomena in Ruddlesden–Popper Phases of Ban+1Zrns3n+1 (N = 1–3) From
    pubs.acs.org/JPCL Letter Exploring Exciton and Polaron Dominated Photophysical − Phenomena in Ruddlesden Popper Phases of Ban+1ZrnS3n+1 (n =1−3) from Many Body Perturbation Theory Deepika Gill,* Arunima Singh, Manjari Jain, and Saswata Bhattacharya* Cite This: J. Phys. Chem. Lett. 2021, 12, 6698−6706 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information − ABSTRACT: Ruddlesden Popper (RP) phases of Ban+1ZrnS3n+1 are an evolving class of chalcogenide perovskites in the field of optoelectronics, especially in solar cells. However, detailed studies regarding its optical, excitonic, polaronic, and transport properties are hitherto unknown. Here, we have explored the excitonic and polaronic effect using several first- principles based methodologies under the framework of Many Body Perturbation Theory. Unlike its bulk counterpart, the optical and excitonic anisotropy are observed in Ban+1ZrnS3n+1 (n =1−3) RP phases. As per the Wannier−Mott approach, the ionic contribution to the dielectric constant is important, but it gets decreased on increasing n in Ban+1ZrnS3n+1. The exciton binding energy is found to be dependent on the presence of large electron−phonon coupling. We further observed maximum charge carrier mobility in the Ba2ZrS4 phase. As per our analysis, the optical phonon modes are observed to dominate the acoustic phonon modes, − leading to a decrease in polaron mobility on increasing n in Ban+1ZrnS3n+1 (n =1 3). − erovskites with the general chemical formula ABX3 have research toward its new phases named
    [Show full text]