PROTON IMPURITY in the NEUTRON MATTER: a NUCLEAR POLARQN PROBLEM Report INP No

Total Page:16

File Type:pdf, Size:1020Kb

PROTON IMPURITY in the NEUTRON MATTER: a NUCLEAR POLARQN PROBLEM Report INP No PROTON IMPURITY IN THE NEUTRON MATTER: A NUCLEAR POLARQN PROBLEM Report INP No. 1603/PH Marek Kutschera H. Niewodniczański Institute of Nuclear Physics ui. Radzikowskiego 152 31-342 Kraków, Poland and Włodzimierz Wćjcik Institute of Physics. Technical University ul.Podchorażych 1 30-0S4 Kraków. Poland October 1992 Attract: We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye approximation The protoii-phonou coupling l.s of tl.e defonnation- potential type at long wavelengths. It is weak at low density raid increases with tbr neutron matter density. We calculate the protons effective mass perturbatively for a weak coupling, and use a canonical transformation teclmique for stronger couplings The proton's effective mass grows significantly with density, and at higher densities the proton impurity can be localized. This behaviour is similar to that of the pnlarou in solids. We obtain properties of the i ocali zed proton in the strong coupling regime from variational calculations, treating the neutron matter in the Thomas-Fermi approximation. PACS number H65.rf 1. INTRODUCTION The number of protons present in the liquid core of neutron stars is of the order of a few percent [1] as compared with neutrons. The proton admixture, wliich is. required for the beta-stability of the system, is found to decrease with density |1]. It eventually vanishes at some density п.. Model calculations give nv in the range: 5n0 to 10n0 !lj. Hence protons can be regarded as impurities in the neutron matter at densities close to nc. Particularly important is the proton effective mass since it plays a crucial role fcr such phenomena in the neutron star matter as proton superfluidity [2j and/or possible spin instability [Z]. The contributions to the proton's effective mass are generally of two types The first one is due to two-body nuclear interactions while the otb,er one is due to the coupling to 1 excitations of the neutron matter. We shall denote corresponding values of the proton's effective mass m. and, mc//, respectively. At finite proton concentrations the latter con¬ tributions are expected to be small |4] and m, ss m«//. However, for a proton impurity, when the relevant energy scale is its vanishing kinetic energy, any phonon contribution can affect the effective mass profoundly, giving mf// much higher than m.. In this paper we study the coupling of proton impurities in dense neutron matter to small density oscillations. This coupling can be quite strong as a result of the behaviour of the proton chemical potential in the neutron matter. Various parametrizations show that it has н minimum close to the saturation density no. At higher densities the proton i'bemic&l potential increases and becomes positive at high densities (Fig. 1). This suggests that a uniform density neutron matter surrounding a proton might not be the lowest energy state. Let us consider a neutron matter of density higher than the one corresponding to the minimum ш Fig.l. and imagine a small density fluctuation, such that the density around the proton is slightly reduced. For the long-wavelength fluctuation the proton energy is thus also reduced, a? the proton moves now in an attractive potential well. This observation indicates that a single proton tends to disturb a uniform neutron matter i.e. there appears a <*oupliiK> o{ the proton to the (long-wavelength) neutron matter density oscillations The coupling has a deformation-potential form. The aim of this paper is to calculate the proton effective mass mr// due to the proion- phouon coupling. The "nuclear" effective, mass m. derived from nuclear matter calculation* will be used as a "Ыи-е'" mass in our calculations. We treat phonoim in the neutron matter ш a Debye approximation. We use a perturbation theory and a canonical transformation technique to calculate the proton effective mass for low and intermediate values of thr cou¬ pling, respectively. The proton effective mass is found to increase with the neutron deusity At higher densities, where the coupling becomes strong, one can expect a behaviour similar to that of the polaron. which becomes localized in the strong coupling limit. We perform i:i the case of stron? coupling variational Thomas-Fermi calculations which show iocali/.auou of a sinele proton in neutron rnatier above a critical density n- which, however, depends strongly on TU.. As we mentioned, the phenomenon we consider has a well known analogue in th«' *ohd state physics. In some crystals the electron-phonon interactions influence the effective masr, of electrons significantly [5.6]. The system consisting of the electron and the virtual phonon cloud is called polaron. Above a critical coupling the polaron becomes localized and the com-sponding effective mass is very large {5.6]. In Sect.2 we derive the interaction Hamiltonian which couples the proton to thr neu¬ tron matter density os-illations. In Sect.3 we calculate the proton effective mass in the first-order perturbation theory, for the weak coupling, and by a canonical transformation technique for stronger couplings. In Sect.4 a possibility of localization is the case of stiong coupling is considered. The results are discussed in Sect .5. 2. COUPLING OF A PROTON IMPURITY TO PHONONS IN NEUTRON MATTER Let us consider a single proton in a uniform neutron mutter of density >ijv. If the momentum к of the proton is low, the energy of toe proton is EP(k) S ^- + «.„, (1) where the effective potential is equal to the proton chemical potential in a neutron matter, We// = M"JV). (2) The chemical potential рр(пц) is the energy of a zero-momentum proton. Here m. is the effective mass of the proton due to nuclear interactions with neutrons and it does not include any phonon contribution. The effective potential can in principle depend on the proton momentum, however, this is higher order and can be neglected for email values of 4 We can thus write the Hamiltooian of the slow proton in the form Н(рв) m -^1 + ,,,,(„„), (3) Assume now that the neutron matter is slightly inhomogeneous, with the neutron density n(r,t) = п* + Л»(г,О, (4) where 6n is a small perturbation. If the density n(r,() varies sufficiently slowly, i.e. the wavelength of. the perturbation is sufficiently long and the frequency is low, the proton energy is still given by eq.(l). Hence the Hamiltonian of the single proton in the neutron mar ter with small long-wavelenght oscillations is The last term describes the coupling of the proton to the snail oscillations of the neutron matter density. For long-wavelength oscillations the neutron matter can be treated ae a continuous medium, and standard methods of describing phonon* in the medium [6] can be used. The density oscillations can be expteastd by tje displacement u(r,r) of the neutron matter from its equilibrium position (6) We can expand the displacement field a in the normal moda (phonons): where e(k) is the unit polarization vector, £ is tbe energy per neutron (including the rest maci) in neutron matter of density njv and u>(k) is the enc .-gy of the phonon of momentum k. For longitudinal acoustical phonons e<k) is parallel to к and w(k) = с, | Ч |, where c, is the velocity of acoustical waves in the neutron matter. Quantization of the phonon field can be carried out in a standard way replacing the Fourier component Ofc(t) ж aucxp(-iu>(k)t) by the pbooon annihilation operator. The interaction Hamiltonian becomes where B(ą) = -i^-(nN)nN*l-±2±-. (9) Expanding also tbe proton wave function in tbe plane wave basis, •Иг) - 4=УЧеЛг, (10) we can write the interaction Hamiltonian in terms of phooon and proton annihilation and creation operators СкК-в!,). (U) Tbe proton-phooon coupling (11) has the form of the defennation-potent.ial coupling in solids [6], with the deformation-potential constant (12) This quantity measures the strength of tbe proton-pbonon coupling. Since it is a product of tbe derivative of .he proton chemical potential, with respect to tbe neutron density, and the neutron density itself, it is small at low densities and near the minimum in Fig.l. For higher densities о increases linearly, Fig.2. In the following we shall consider only tbe high density range which extends to the right of tbe minimum in Fig.l. The proton-pbonon coupling is thus weak near tbe minimum and becomes strong at high density. 3. WEAK AND INTERMEDIATE PROTON-PHONON COUPLING The interaction Hamiltonian (11) can be treated as a small perturbation of the energy 0) of a proton in a uniform density neutron matter Hp , eq.(3), in case of low values of B(q). We now consider this case. Pertvrb*tivt ctleuUtions The lowest-order perturbation correction is obtained for single-phonon intermediate states [6]. The first order wave function, in the Fock representation, is -1M + (-DE 1 where the matrix element of the interaction Hamiltonian is <k,,lq|A««|k.0>= -^B(q)<5klik_q (M) and £>(k,q) = Ep(k-q) + w(q) - EP(k). (15) We use here a standard notation [6], in which the single-phonon states ( k, lq > are defined by the proton momentum к and the phonon momentum q. The wave function (13) is thus Using the wave function (16) we can calculate the energy of the proton impurity up to the second order in the interaction, which is F<2>^ kJ j. уЧ< к - q, !«, | H, | к, О E*(k) = sz + v"f - \ fcj nt Evaluating the last contribution in the expression (17) we can find the proton effective mass, as well as the change of the proton energy due to the coupling to phonons.
Recommended publications
  • Computing ATOMIC NUCLEI
    UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes.
    [Show full text]
  • Polarons Get the Full Treatment
    VIEWPOINT Polarons Get the Full Treatment A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. by Chris G. Van de Walle∗ When an electron travels through a solid, its negative charge exerts an attractive force on the surrounding posi- n 1933, theoretical physicist Lev Landau wrote a tively charged atomic nuclei. In response, the nuclei move 500-word article discussing how an electron traveling away from their equilibrium positions, trying to reach for through a solid might end up trapped by a distortion of the electron. The resulting distortion of the crystalline lat- the surrounding lattice [1]. Those few lines marked the tice creates a lump of positive charge that tags along with Ibeginning of the study of what we now call polarons, some the moving electron. This combination of the electron and of the most celebrated “quasiparticles” in condensed-matter the lattice distortion—which can be seen as an elementary physics—essential to understanding devices such as organic particle moving through the solid—is a polaron [4, 5]. In light-emitting-diode (OLED) displays or the touchscreens of the language of condensed-matter physics, the polaron is a smart devices. Until now, researchers have relied on two quasiparticle formed by “dressing” an electron with a cloud approaches to describe these complex quasiparticles: ide- of phonons, the quantized vibrations of the crystal lattice. alized mathematical models and numerical methods based Polarons may be large or small—depending on how the size on density-functional theory (DFT).
    [Show full text]
  • Large Polaron Formation and Its Effect on Electron Transport in Hybrid
    Large Polaron Formation and its Effect on Electron Transport in Hybrid Perovskite Fan Zheng and Lin-wang Wang∗ 1 Joint Center for Artificial Photosynthesis and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. E-mail: [email protected] 2 Abstract 3 Many experiments have indicated that large polaron may be formed in hybrid per- 4 ovskite, and its existence is proposed to screen the carrier-carrier and carrier-defect 5 scattering, thus contributing to the long lifetime for the carriers. However, detailed 6 theoretical study of the large polaron and its effect on carrier transport at the atomic 7 level is still lacking. In particular, how strong is the large polaron binding energy, 8 how does its effect compare with the effect of dynamic disorder caused by the A-site 9 molecular rotation, and how does the inorganic sublattice vibration impact the mo- 10 tion of the large polaron, all these questions are largely unanswered. In this work, 11 using CH3NH3PbI3 as an example, we implement tight-binding model fitted from the 12 density-functional theory to describe the electron large polaron ground state and to 13 understand the large polaron formation and transport at its strong-coupling limit. We 14 find that the formation energy of the large polaron is around -12 meV for the case 15 without dynamic disorder, and -55 meV by including dynamic disorder. By perform- 16 ing the explicit time-dependent wavefunction evolution of the polaron state, together + − 17 with the rotations of CH3NH3 and vibrations of PbI3 sublattice, we studied the diffu- 18 sion constant and mobility of the large polaron state driven by the dynamic disorder 1 19 and the sublattice vibration.
    [Show full text]
  • 1 PROF. CHHANDA SAMANTA, Phd PAPERS in PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, Bonding A
    PROF. CHHANDA SAMANTA, PhD PAPERS IN PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, bonding and charge symmetry breaking in Λ- hypernuclei”, arXiv:1710.08036v2 [nucl-th] (to be published) 2. T. A. Schmitt, C. Samanta, “A-dependence of -bond and charge symmetry energies”, EPJ Web Conf. 182, 03012 (2018) 3. Chhanda Samanta, Superheavy Nuclei to Hypernuclei: A Tribute to Walter Greiner, EPJ Web Conf. 182, 02107 (2018) 4. C. Samanta with X Qiu, L Tang, C Chen, et al., “Direct measurements of the lifetime of medium-heavy hypernuclei”, Nucl. Phys. A973, 116 (2018); arXiv:1212.1133 [nucl-ex] 5. C. Samanta with with S. Mukhopadhyay, D. Atta, K. Imam, D. N. Basu, “Static and rotating hadronic stars mixed with self-interacting fermionic Asymmetric Dark Matter”, The European Physical Journal C.77:440 (2017); arXiv:1612.07093v1 6. C. Samanta with R. Honda, M. Agnello, J. K. Ahn et al, “Missing-mass spectroscopy with 6 − + 6 the Li(π ,K )X reaction to search for ΛH”, Phys. Rev. C 96, 014005 (2017); arXiv:1703.00623v2 [nucl-ex] 7. C. Samanta with T. Gogami, C. Chen, D. Kawama et al., “Spectroscopy of the neutron-rich 7 hypernucleus He from electron scattering”, Phys. Rev. C94, 021302(R) (2016); arXiv:1606.09157 8. C. Samanta with T. Gogami, C. Chen, D. Kawama,et al., ”High Resolution Spectroscopic 10 Study of ΛBe”, Phys. Rev. C93, 034314(2016); arXiv:1511.04801v1[nucl-ex] 9. C. Samanta with L. Tang, C. Chen, T. Gogami et al., “The experiments with the High 12 Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ΛB hypernuclei, Phys.
    [Show full text]
  • Current Status of Equation of State in Nuclear Matter and Neutron Stars
    Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ???
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Structure of Exotic Nuclei: a Theoretical Review
    Structure of Exotic Nuclei: A Theoretical Review Shan-Gui Zhou∗ CAS Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha, 410081, China E-mail: [email protected] The study of exotic nuclei—nuclei with the ratio of neutron number N to proton number Z de- viating much from that of those found in nature—is at the forefront of nuclear physics research because it can not only reveal novel nuclear properties and thus enrich our knowledge of atomic nuclei, but also help us to understand the origin of chemical elements in the nucleosynthesis. With the development of radioactive ion beam facilities around the world, more and more unstable nu- clei become experimentally accessible. Many exotic nuclear phenomena have been observed or predicted in nuclei far from the β-stability line, such as neutron or proton halos, the shell evo- lution and changes of nuclear magic numbers, the island of inversion, soft-dipole excitations, clustering effects, new radioactivities, giant neutron halos, the shape decoupling between core and valence nucleons in deformed halo nuclei, etc. In this contribution, I will present a review of theoretical study of exotic nuclear structure. I will first introduce characteristic features and new physics connected with exotic nuclear phenomena: the weakly-bound feature, the large-spatial extension in halo nuclei, deformation effects in halo nuclei, the shell evolution, new radioactiv- ities and clustering effects.
    [Show full text]
  • Arxiv:2006.13529V2 [Quant-Ph] 1 Jul 2020 Utrwith Ductor Es[E Fig
    Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions Oliver Kaestle,1, ∗ Ying Hu,2, 3 Alexander Carmele1 1Technische Universit¨at Berlin, Institut f¨ur Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Hardenbergstrae 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Dated: July 28, 2021) We investigate the dynamical interplay between topological state of matter and a non-Markovian dissipation, which gives rise to a new and crucial time scale into the system dynamics due to its quan- tum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynam- ics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of Majorana correlation. Exploring topological properties out of equilibrium is stantial preservation of topological properties far from central in the effort to realize,
    [Show full text]
  • Polaron Formation in Cuprates
    Polaron formation in cuprates Olle Gunnarsson 1. Polaronic behavior in undoped cuprates. a. Is the electron-phonon interaction strong enough? b. Can we describe the photoemission line shape? 2. Does the Coulomb interaction enhance or suppress the electron-phonon interaction? Large difference between electrons and phonons. Cooperation: Oliver Rosch,¨ Giorgio Sangiovanni, Erik Koch, Claudio Castellani and Massimo Capone. Max-Planck Institut, Stuttgart, Germany 1 Important effects of electron-phonon coupling • Photoemission: Kink in nodal direction. • Photoemission: Polaron formation in undoped cuprates. • Strong softening, broadening of half-breathing and apical phonons. • Scanning tunneling microscopy. Isotope effect. MPI-FKF Stuttgart 2 Models Half- Coulomb interaction important. breathing. Here use Hubbard or t-J models. Breathing and apical phonons: Coupling to level energies >> Apical. coupling to hopping integrals. ⇒ g(k, q) ≈ g(q). Rosch¨ and Gunnarsson, PRL 92, 146403 (2004). MPI-FKF Stuttgart 3 Photoemission. Polarons H = ε0c†c + gc†c(b + b†) + ωphb†b. Weak coupling Strong coupling 2 ω 2 ω 2 1.8 (g/ ph) =0.5 (g/ ph) =4.0 1.6 1.4 1.2 ph ω ) 1 ω A( 0.8 0.6 Z 0.4 0.2 0 -8 -6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 ω ω ω ω / ph / ph Strong coupling: Exponentially small quasi-particle weight (here criterion for polarons). Broad, approximately Gaussian side band of phonon satellites. MPI-FKF Stuttgart 4 Polaronic behavior Undoped CaCuO2Cl2. K.M. Shen et al., PRL 93, 267002 (2004). Spectrum very broad (insulator: no electron-hole pair exc.) Shape Gaussian, not like a quasi-particle.
    [Show full text]
  • Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized.
    [Show full text]
  • Polaron Physics Beyond the Holstein Model
    Polaron physics beyond the Holstein model by Dominic Marchand B.Sc. in Computer Engineering, Universit´eLaval, 2002 B.Sc. in Physics, Universit´eLaval, 2004 M.Sc. in Physics, The University of British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Physics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2011 c Dominic Marchand 2011 Abstract Many condensed matter problems involve a particle coupled to its environment. The polaron, originally introduced to describe electrons in a polarizable medium, describes a particle coupled to a bosonic field. The Holstein polaron model, although simple, including only optical Einstein phonons and an interaction that couples them to the electron density, captures almost all of the standard polaronic properties. We herein investigate polarons that differ significantly from this behaviour. We study a model with phonon-modulated hopping, and find a radically different behaviour at strong couplings. We report a sharp transition, not a crossover, with a diverging effective mass at the critical coupling. We also look at a model with acoustic phonons, away from the perturbative limit, and again discover unusual polaron properties. Our work relies on the Bold Diagrammatic Monte Carlo (BDMC) method, which samples Feynman diagrammatic expansions efficiently, even those with weak sign problems. Proposed by Prokof’ev and Svistunov, it is extended to lattice polarons for the first time here. We also use the Momentum Average (MA) approximation, an analytical method proposed by Berciu, and find an excellent agreement with the BDMC results. A novel MA approximation able to treat dispersive phonons is also presented, along with a new exact solution for finite systems, inspired by the same formalism.
    [Show full text]
  • A Modern View of the Equation of State in Nuclear and Neutron Star Matter
    S S symmetry Article A Modern View of the Equation of State in Nuclear and Neutron Star Matter G. Fiorella Burgio * , Hans-Josef Schulze , Isaac Vidaña and Jin-Biao Wei INFN Sezione di Catania, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] (H.-J.S.); [email protected] (I.V.); [email protected] (J.-B.W.) * Correspondence: fi[email protected] Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur- rently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the +0.10 largest NS mass observed up to now, 2.14−0.09 M for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5 M deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility.
    [Show full text]