Interacting Polaron-Polaritons

Total Page:16

File Type:pdf, Size:1020Kb

Interacting Polaron-Polaritons PHYSICAL REVIEW X 10, 021011 (2020) Featured in Physics Interacting Polaron-Polaritons Li Bing Tan,1,* Ovidiu Cotlet,1 Andrea Bergschneider ,1 Richard Schmidt ,2,3 Patrick Back,1 Yuya Shimazaki,1 † Martin Kroner,1 and Ataç İmamoğlu1, 1Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland 2Max Planck Institute of Quantum Optics, 85748 Garching, Germany 3Munich Center for Quantum Science and Technology, Schellingstrasse 4, 80799 Münich, Germany (Received 21 October 2019; revised manuscript received 19 January 2020; accepted 19 February 2020; published 15 April 2020) Two-dimensional semiconductors provide an ideal platform for exploration of linear exciton and polariton physics, primarily due to large exciton binding energy and strong light-matter coupling. These features, however, generically imply reduced exciton-exciton interactions, hindering the realization of active optical devices such as lasers or parametric oscillators. Here, we show that electrical injection of itinerant electrons into monolayer molybdenum diselenide allows us to overcome this limitation: dynamical screening of exciton-polaritons by electrons leads to the formation of new quasiparticles termed polaron-polaritons that exhibit unexpectedly strong interactions as well as optical amplification by Bose-enhanced polaron-electron scattering. To measure the nonlinear optical response, we carry out time- resolved pump-probe measurements and observe polaron-polariton interaction enhancement by a factor of 50 (0.5 μeV μm2) as compared to exciton-polaritons. Concurrently, we measure a spectrally integrated transmission gain of the probe field of ≳2 stemming from stimulated scattering of polaron-polaritons. We show theoretically that the nonequilibrium nature of optically excited quasiparticles favors a previously unexplored interaction mechanism stemming from a phase-space filling in the screening cloud, which provides an accurate explanation of the strong repulsive interactions observed experimentally. Our findings show that itinerant electron-exciton interactions provide an invaluable tool for electronic manipulation of optical properties, demonstrate a new mechanism for dramatically enhancing polariton-polariton interactions, and pave the way for realization of nonequilibrium polariton condensates. DOI: 10.1103/PhysRevX.10.021011 Subject Areas: Condensed Matter Physics, Quantum Physics, Semiconductor Physics I. INTRODUCTION or holes [6], and the realization of atomically thin mirrors [7,8]. However, nonlinear optical properties, crucial Monolayer transition metal dichalcogenides (TMDs) for the realization of novel photonic devices ranging from combine strong light-matter coupling and a large number parametric oscillators to exciton-polariton lasers, have been of degrees of freedom with which to manipulate photons. largely missing in the reported studies. This is at a first Because of the strong Coulomb interaction, excitons glance not surprising since nonlinearities typically scale as constitute the elementary optical excitation and dominate the exciton Bohr radius and hence are suppressed in TMD optical spectra in TMDs. Many novel features of linear monolayers where excitons are strongly bound [6,9,10],as optical properties of TMD excitons have been demon- compared to quasi-2D materials such as gallium arsenide strated, including the optical control of the valley degrees of (GaAs) quantum wells. Consequently, an outstanding freedom using the helicity of the excitation light [1,2] or challenge for the field is to find ways to enhance the external magnetic fields [3–5], electrical control of the exciton-exciton interaction strength, or more precisely, its optical spectrum through injection of itinerant electrons ratio to the exciton radiative decay rate. Theoretical proposals to date include the exploitation of large inter- actions between Rydberg excitons with three-level driving *[email protected] schemes [11] and the reduction of the exciton radiative † [email protected] decay rate by placing a monolayer in a high quality-factor (Q) cavity [12] or, more elegantly, by placing a monolayer Published by the American Physical Society under the terms of at λ=2 distance away from a mirror [13]. However, experi- the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to ments have so far only confirmed that exciton-exciton the author(s) and the published article’s title, journal citation, interactions in neutral TMD monolayers are more than an and DOI. order of magnitude weaker than those in GaAs [8,14]. 2160-3308=20=10(2)=021011(17) 021011-1 Published by the American Physical Society LI BING TAN et al. PHYS. REV. X 10, 021011 (2020) In this work, we demonstrate that the presence of itinerant the polaron-LP state, this scattering process is Bose electrons dramatically enhances nonlinear optical properties enhanced [34,35], leading to the observed gain. of TMD monolayers. In an earlier work, we investigated the After describing the experimental setup and reviewing linear optics of doped monolayer MoSe2 and identified the linear optical properties in the presence of nonpertur- exciton-polarons as the relevant quasiparticles [15–17].In bative coupling between excitons and the cavity mode as TMD monolayers, the exciton has an ultralarge binding well as excitons and electrons in Sec. II, we present energy that dominates over the electron plasma frequency the experimental signatures unveiled in nonlinear spectros- and Fermi energy. In consequence, the exciton can be copy, namely the enhancement of nonlinearities (Sec. III) considered as a robust quantum impurity interacting with and polariton amplification in the presence of itinerant a fermionic bath. The itinerant electrons dynamically screen electrons as compared to the charge neutral regime the exciton to form new quasiparticle branches—the attrac- (Sec. IV). We then present the theoretical model and tive and repulsive polaron—each with a renormalized mass calculations of the scattering rates due to residual inter- and energy [15,16]. A simple description of the polaron as a actions in Sec. V. Finally, in Sec. VI, we discuss avenues for superposition of a bare exciton and an exciton dressed with a further work. single electron-hole pair [18] was sufficient to accurately predict the resonances observed in linear spectroscopy. We II. ELEMENTARY OPTICAL EXCITATIONS OF remark that optical excitations in the presence of a 2DEG MoSe AN ELECTRON-DOPED MONOLAYER 2 were previously analyzed both theoretically and experimen- EMBEDDED IN A MICROCAVITY tally, where the attractive polaron resonance was termed a tetron [19] or a trion-hole pair [20,21]. Our experiments are based on a van der Waals hetero- Here, we use nonlinear spectroscopy to investigate the structure consisting of a MoSe2 monolayer semiconductor residual quasiparticle interactions in the strong cavity- embedded between 2 hexagonal boron nitride (h-BN) coupling regime [22–26] where elementary optical excita- flakes. A top graphene layer allows us to control the tions are polaron-polaritons [15]. We find their effective electron density [Fig. 1(a)]. We place the heterostructure in polariton-polariton interaction strength to exceed that of a tunable zero-dimensional open cavity [36] consisting of a their undressed counterparts by up to a factor of ∼50, and flat distributed-Bragg-reflector- (DBR) coated transparent we demonstrate an unexpected but unequivocal amplifica- substrate and a concave DBR-coated fiber facet [Fig. 1(b)] tion of polaron-polaritons accompanying the interaction- (Q ≃ 1800). All experiments are carried out at liquid induced blueshifts, with gain factors ≳2. helium temperature (see the Appendix A). The enhanced nonlinearities can be attributed to residual Figures 1(c) and 1(d) show the white light transmission interactions between the polaron quasiparticles. Using a spectrum measured for vanishing electron density ¼ −30 ¼ 5 wave function technique, we show how the measured (Vg V) and finite electron density (Vg V), repulsive interaction shift in the presence of itinerant respectively, in the strong-coupling regime as a function electrons can be understood in terms of a phase-space of the cavity length. In both cases, the measured spectra filling (PSF) effect. Here, the strong correlations between exhibit avoided crossings associated with the formation of pump-generated polaritons and electrons, that are associ- half-light, half-matter quasiparticles termed polaritons ¼ −30 ated with the formation of a polaron dressing cloud, lead to [15,37]. In the charge neutral regime at Vg V, an effective depletion of the electronic medium. Thus, we observe an exciton-polariton normal mode splitting additional polaritons created by the probe cannot be of 14 meV. When the monolayer is electron doped ¼ 5 screened with maximal efficiency, resulting in an increase (Vg V), dynamical screening of the excitons by elec- of their energy. Already at the lowest order, our approach trons dramatically alters the nature of elementary optical leads to a remarkable agreement between theory and excitations, leading to the appearance of attractive and experiment: we attribute this in part to the zero-dimensional repulsive exciton-polaron resonances. nature of the cavity mode which ensures that the lowest- To analyze how the exciton-electron interaction modifies energy optically excited state of the coupled system— the ground state of the cavity-coupled system, we start from ¼ þ the lower-polaron-polariton
Recommended publications
  • Polarons Get the Full Treatment
    VIEWPOINT Polarons Get the Full Treatment A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. by Chris G. Van de Walle∗ When an electron travels through a solid, its negative charge exerts an attractive force on the surrounding posi- n 1933, theoretical physicist Lev Landau wrote a tively charged atomic nuclei. In response, the nuclei move 500-word article discussing how an electron traveling away from their equilibrium positions, trying to reach for through a solid might end up trapped by a distortion of the electron. The resulting distortion of the crystalline lat- the surrounding lattice [1]. Those few lines marked the tice creates a lump of positive charge that tags along with Ibeginning of the study of what we now call polarons, some the moving electron. This combination of the electron and of the most celebrated “quasiparticles” in condensed-matter the lattice distortion—which can be seen as an elementary physics—essential to understanding devices such as organic particle moving through the solid—is a polaron [4, 5]. In light-emitting-diode (OLED) displays or the touchscreens of the language of condensed-matter physics, the polaron is a smart devices. Until now, researchers have relied on two quasiparticle formed by “dressing” an electron with a cloud approaches to describe these complex quasiparticles: ide- of phonons, the quantized vibrations of the crystal lattice. alized mathematical models and numerical methods based Polarons may be large or small—depending on how the size on density-functional theory (DFT).
    [Show full text]
  • Large Polaron Formation and Its Effect on Electron Transport in Hybrid
    Large Polaron Formation and its Effect on Electron Transport in Hybrid Perovskite Fan Zheng and Lin-wang Wang∗ 1 Joint Center for Artificial Photosynthesis and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. E-mail: [email protected] 2 Abstract 3 Many experiments have indicated that large polaron may be formed in hybrid per- 4 ovskite, and its existence is proposed to screen the carrier-carrier and carrier-defect 5 scattering, thus contributing to the long lifetime for the carriers. However, detailed 6 theoretical study of the large polaron and its effect on carrier transport at the atomic 7 level is still lacking. In particular, how strong is the large polaron binding energy, 8 how does its effect compare with the effect of dynamic disorder caused by the A-site 9 molecular rotation, and how does the inorganic sublattice vibration impact the mo- 10 tion of the large polaron, all these questions are largely unanswered. In this work, 11 using CH3NH3PbI3 as an example, we implement tight-binding model fitted from the 12 density-functional theory to describe the electron large polaron ground state and to 13 understand the large polaron formation and transport at its strong-coupling limit. We 14 find that the formation energy of the large polaron is around -12 meV for the case 15 without dynamic disorder, and -55 meV by including dynamic disorder. By perform- 16 ing the explicit time-dependent wavefunction evolution of the polaron state, together + − 17 with the rotations of CH3NH3 and vibrations of PbI3 sublattice, we studied the diffu- 18 sion constant and mobility of the large polaron state driven by the dynamic disorder 1 19 and the sublattice vibration.
    [Show full text]
  • Arxiv:2104.14459V2 [Cond-Mat.Mes-Hall] 13 Aug 2021 Rymksnnaeinayn Uha Bspromising Prop- Mbss This As Such Subsequent Anyons Commuting
    Majorana bound states in semiconducting nanostructures Katharina Laubscher1 and Jelena Klinovaja1 Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Dated: 16 August 2021) In this Tutorial, we give a pedagogical introduction to Majorana bound states (MBSs) arising in semiconduct- ing nanostructures. We start by briefly reviewing the well-known Kitaev chain toy model in order to introduce some of the basic properties of MBSs before proceeding to describe more experimentally relevant platforms. Here, our focus lies on simple ‘minimal’ models where the Majorana wave functions can be obtained explicitly by standard methods. In a first part, we review the paradigmatic model of a Rashba nanowire with strong spin-orbit interaction (SOI) placed in a magnetic field and proximitized by a conventional s-wave supercon- ductor. We identify the topological phase transition separating the trivial phase from the topological phase and demonstrate how the explicit Majorana wave functions can be obtained in the limit of strong SOI. In a second part, we discuss MBSs engineered from proximitized edge states of two-dimensional (2D) topological insulators. We introduce the Jackiw-Rebbi mechanism leading to the emergence of bound states at mass domain walls and show how this mechanism can be exploited to construct MBSs. Due to their recent interest, we also include a discussion of Majorana corner states in 2D second-order topological superconductors. This Tutorial is mainly aimed at graduate students—both theorists and experimentalists—seeking to familiarize themselves with some of the basic concepts in the field. I. INTRODUCTION In 1937, the Italian physicist Ettore Majorana pro- posed the existence of an exotic type of fermion—later termed a Majorana fermion—which is its own antiparti- cle.1 While the original idea of a Majorana fermion was brought forward in the context of high-energy physics,2 it later turned out that emergent excitations with re- FIG.
    [Show full text]
  • The New Era of Polariton Condensates David W
    The new era of polariton condensates David W. Snoke, and Jonathan Keeling Citation: Physics Today 70, 10, 54 (2017); doi: 10.1063/PT.3.3729 View online: https://doi.org/10.1063/PT.3.3729 View Table of Contents: http://physicstoday.scitation.org/toc/pto/70/10 Published by the American Institute of Physics Articles you may be interested in Ultraperipheral nuclear collisions Physics Today 70, 40 (2017); 10.1063/PT.3.3727 Death and succession among Finland’s nuclear waste experts Physics Today 70, 48 (2017); 10.1063/PT.3.3728 Taking the measure of water’s whirl Physics Today 70, 20 (2017); 10.1063/PT.3.3716 Microscopy without lenses Physics Today 70, 50 (2017); 10.1063/PT.3.3693 The relentless pursuit of hypersonic flight Physics Today 70, 30 (2017); 10.1063/PT.3.3762 Difficult decisions Physics Today 70, 8 (2017); 10.1063/PT.3.3706 David Snoke is a professor of physics and astronomy at the University of Pittsburgh in Pennsylvania. Jonathan Keeling is a reader in theoretical condensed-matter physics at the University of St Andrews in Scotland. The new era of POLARITON CONDENSATES David W. Snoke and Jonathan Keeling Quasiparticles of light and matter may be our best hope for harnessing the strange effects of quantum condensation and superfluidity in everyday applications. magine, if you will, a collection of many photons. Now and applied—remains to turn those ideas into practical technologies. But the dream imagine that they have mass, repulsive interactions, and isn’t as distant as it once seemed. number conservation.
    [Show full text]
  • Arxiv:2006.13529V2 [Quant-Ph] 1 Jul 2020 Utrwith Ductor Es[E Fig
    Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions Oliver Kaestle,1, ∗ Ying Hu,2, 3 Alexander Carmele1 1Technische Universit¨at Berlin, Institut f¨ur Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Hardenbergstrae 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Dated: July 28, 2021) We investigate the dynamical interplay between topological state of matter and a non-Markovian dissipation, which gives rise to a new and crucial time scale into the system dynamics due to its quan- tum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynam- ics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of Majorana correlation. Exploring topological properties out of equilibrium is stantial preservation of topological properties far from central in the effort to realize,
    [Show full text]
  • Polaron Formation in Cuprates
    Polaron formation in cuprates Olle Gunnarsson 1. Polaronic behavior in undoped cuprates. a. Is the electron-phonon interaction strong enough? b. Can we describe the photoemission line shape? 2. Does the Coulomb interaction enhance or suppress the electron-phonon interaction? Large difference between electrons and phonons. Cooperation: Oliver Rosch,¨ Giorgio Sangiovanni, Erik Koch, Claudio Castellani and Massimo Capone. Max-Planck Institut, Stuttgart, Germany 1 Important effects of electron-phonon coupling • Photoemission: Kink in nodal direction. • Photoemission: Polaron formation in undoped cuprates. • Strong softening, broadening of half-breathing and apical phonons. • Scanning tunneling microscopy. Isotope effect. MPI-FKF Stuttgart 2 Models Half- Coulomb interaction important. breathing. Here use Hubbard or t-J models. Breathing and apical phonons: Coupling to level energies >> Apical. coupling to hopping integrals. ⇒ g(k, q) ≈ g(q). Rosch¨ and Gunnarsson, PRL 92, 146403 (2004). MPI-FKF Stuttgart 3 Photoemission. Polarons H = ε0c†c + gc†c(b + b†) + ωphb†b. Weak coupling Strong coupling 2 ω 2 ω 2 1.8 (g/ ph) =0.5 (g/ ph) =4.0 1.6 1.4 1.2 ph ω ) 1 ω A( 0.8 0.6 Z 0.4 0.2 0 -8 -6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 ω ω ω ω / ph / ph Strong coupling: Exponentially small quasi-particle weight (here criterion for polarons). Broad, approximately Gaussian side band of phonon satellites. MPI-FKF Stuttgart 4 Polaronic behavior Undoped CaCuO2Cl2. K.M. Shen et al., PRL 93, 267002 (2004). Spectrum very broad (insulator: no electron-hole pair exc.) Shape Gaussian, not like a quasi-particle.
    [Show full text]
  • Majorana Fermions in Quantum Wires and the Influence of Environment
    Freie Universitat¨ Berlin Department of Physics Master thesis Majorana fermions in quantum wires and the influence of environment Supervisor: Written by: Prof. Karsten Flensberg Konrad W¨olms Prof. Piet Brouwer 25. May 2012 Contents page 1 Introduction 5 2 Majorana Fermions 7 2.1 Kitaev model . .9 2.2 Helical Liquids . 12 2.3 Spatially varying Zeeman fields . 14 2.3.1 Scattering matrix criterion . 16 2.4 Application of the criterion . 17 3 Majorana qubits 21 3.1 Structure of the Majorana Qubits . 21 3.2 General Dephasing . 22 3.3 Majorana 4-point functions . 24 3.4 Topological protection . 27 4 Perturbative corrections 29 4.1 Local perturbations . 29 4.1.1 Calculation of the correlation function . 30 4.1.2 Non-adiabatic effects of noise . 32 4.1.3 Uniform movement of the Majorana fermion . 34 4.2 Coupling between Majorana fermions . 36 4.2.1 Static perturbation . 36 4.3 Phonon mediated coupling . 39 4.3.1 Split Majorana Green function . 39 4.3.2 Phonon Coupling . 40 4.3.3 Self-Energy . 41 4.3.4 Self Energy in terms of local functions . 43 4.4 Calculation of B ................................ 44 4.4.1 General form for the electron Green function . 46 4.5 Calculation of Σ . 46 5 Summary 51 6 Acknowledgments 53 Bibliography 55 3 1 Introduction One of the fascinating aspects of condensed matter is the emergence of quasi-particles. These often describe the low energy behavior of complicated many-body systems extremely well and have long become an essential tool for the theoretical description of many condensed matter system.
    [Show full text]
  • Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized.
    [Show full text]
  • Polaron Physics Beyond the Holstein Model
    Polaron physics beyond the Holstein model by Dominic Marchand B.Sc. in Computer Engineering, Universit´eLaval, 2002 B.Sc. in Physics, Universit´eLaval, 2004 M.Sc. in Physics, The University of British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Physics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2011 c Dominic Marchand 2011 Abstract Many condensed matter problems involve a particle coupled to its environment. The polaron, originally introduced to describe electrons in a polarizable medium, describes a particle coupled to a bosonic field. The Holstein polaron model, although simple, including only optical Einstein phonons and an interaction that couples them to the electron density, captures almost all of the standard polaronic properties. We herein investigate polarons that differ significantly from this behaviour. We study a model with phonon-modulated hopping, and find a radically different behaviour at strong couplings. We report a sharp transition, not a crossover, with a diverging effective mass at the critical coupling. We also look at a model with acoustic phonons, away from the perturbative limit, and again discover unusual polaron properties. Our work relies on the Bold Diagrammatic Monte Carlo (BDMC) method, which samples Feynman diagrammatic expansions efficiently, even those with weak sign problems. Proposed by Prokof’ev and Svistunov, it is extended to lattice polarons for the first time here. We also use the Momentum Average (MA) approximation, an analytical method proposed by Berciu, and find an excellent agreement with the BDMC results. A novel MA approximation able to treat dispersive phonons is also presented, along with a new exact solution for finite systems, inspired by the same formalism.
    [Show full text]
  • Room Temperature and Low-Field Resonant Enhancement of Spin
    ARTICLE https://doi.org/10.1038/s41467-019-13121-5 OPEN Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets R. Ramos 1*, T. Hioki 2, Y. Hashimoto1, T. Kikkawa 1,2, P. Frey3, A.J.E. Kreil 3, V.I. Vasyuchka3, A.A. Serga 3, B. Hillebrands 3 & E. Saitoh1,2,4,5,6 1234567890():,; Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observe in fi Lu2BiFe4GaO12 an enhancement 700% greater than that in a YIG lm and at very low magnetic fields around 10À1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping, with potential applications for spintronic devices. 1 WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 2 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 3 Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany. 4 Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan. 5 Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan.
    [Show full text]
  • PHYSICAL REVIEW B 102, 245115 (2020) Memory-Critical Dynamical
    PHYSICAL REVIEW B 102,245115(2020) Memory-critical dynamical buildup of phonon-dressed Majorana fermions Oliver Kaestle ,1,* Yue Sun, 2,3 Ying Hu,2,3 and Alexander Carmele 1 1Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Received 2 July 2020; revised 24 November 2020; accepted 24 November 2020; published 11 December 2020) We investigate the dynamical interplay between the topological state of matter and a non-Markovian dis- sipation, which gives rise to a crucial timescale into the system dynamics due to its quantum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of the topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of the Majorana correlation. DOI: 10.1103/PhysRevB.102.245115 I. INTRODUCTION phonon-renormalized Hamiltonian parameters (see Fig. 1). In contrast to Markovian decoherence that typically destroys Exploring topological properties out of equilibrium is cen- topological features for long times, we show that a finite tral in the effort to realize, probe, and exploit topological states quantum memory allows for substantial preservation of topo- of matter in the laboratory [1–15].
    [Show full text]
  • Tunable Phonon Polaritons in Atomically Thin Van Der Waals Crystals of Boron Nitride
    Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Dai, S., Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, et al. “Tunable Phonon Polaritons in Atomically Thin van Der Waals Crystals of Boron Nitride.” Science 343, no. 6175 (March 7, 2014): 1125–1129. As Published http://dx.doi.org/10.1126/science.1246833 Publisher American Association for the Advancement of Science (AAAS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/90317 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride Authors: S. Dai1, Z. Fei1, Q. Ma2, A. S. Rodin3, M. Wagner1, A. S. McLeod1, M. K. Liu1, W. Gannett4,5, W. Regan4,5, K. Watanabe6, T. Taniguchi6, M. Thiemens7, G. Dominguez8, A. H. Castro Neto3,9, A. Zettl4,5, F. Keilmann10, P. Jarillo-Herrero2, M. M. Fogler1, D. N. Basov1* Affiliations: 1Department of Physics, University of California, San Diego, La Jolla, California 92093, USA 2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3Department of Physics, Boston University, Boston, Massachusetts 02215, USA 4Department of Physics and Astronomy, University of California, Berkeley, Berkeley, California 94720, USA 5Materials Sciences Division, Lawrence Berkeley
    [Show full text]