Transportation & Logistics Systems, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Transportation & Logistics Systems, Inc SECURITIES & EXCHANGE COMMISSION EDGAR FILING Transportation & Logistics Systems, Inc. Form: 10-Q Date Filed: 2015-11-06 Corporate Issuer CIK: 1463208 © Copyright 2020, Issuer Direct Corporation. All Right Reserved. Distribution of this document is strictly prohibited, subject to the terms of use. UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-Q [X] QUARTERLY REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the quarterly period ended September 30, 2015 [ ] TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from _____ to _____ Commission File No. 001-34970 PetroTerra Corp. (Exact Name of Issuer as specified in its charter) Nevada 7380 26-3106763 (State or jurisdiction of Primary Standard Industrial IRS Employer incorporation or organization) Classification Code Number Identification Number 422 East Vermijo Avenue, Suite 313 Colorado Springs, Colorado 80903 (Address of principal executive offices) 719-219-6404 (Issuer’s telephone number) (Former name, former address and former fiscal year, if changed since last report.) Indicate by checkmark whether the issuer: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Exchange Act during the past 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes [X] No [ ] Indicate by check mark whether the registrant has submitted electronically and posted on its corporate Web site, if any, every Interactive Data File required to be submitted and posted pursuant to Rule 405 of Regulations S-T (§232.405 of this chapter) during the preceding 12 months (or for shorter period that the registrant was required to submit and post such files). Yes [X] No [ ] Indicate by check mark whether the registrant is a large accelerated filed, an accelerated filer, a non-accelerated filer or a smaller reporting company. Large accelerated filer [ ] Accelerated filer [ ] Non accelerated filer [ ] Small reporting company [X] Indicate by checkmark whether the registrant is a shell company (as defined in Rule 12b-2 of the Exchange Act). Yes [ ] No [X] Indicate the number of shares outstanding of each of the issuer’s classes of common stock, as of the most practicable date: Class Outstanding as of November 5, 2015 Common Stock, $0.001 26,993,640 EDGAR Stream is a copyright of Issuer Direct Corporation, all rights reserved. FORM 10-Q PETROTERRA CORP. INDEX Page PART I. FINANCIAL INFORMATION Item 1. Financial Statements F-1 Balance Sheets F-1 Statements of Operations F-2 Statements of Cash Flows F-3 Notes to Financial Statements F-4 Item 2. Management’s Discussion and Analysis of Financial Condition and Results of Operations 3 Item 3. Quantitative and Qualitative Disclosures About Market Risk 10 Item 4. Controls and Procedures 10 PART II. OTHER INFORMATION Item 1. Legal Proceedings 10 Item 1A. Risk Factors 10 Item 2. Unregistered Sales of Equity Securities and Use of Proceeds 10 Item 3. Defaults Upon Senior Securities 11 Item 4. Submission of Matters to a Vote of Security Holders 11 Item 5. Other Information 11 Item 6. Exhibits 11 Signatures 12 2 EDGAR Stream is a copyright of Issuer Direct Corporation, all rights reserved. PART I. FINANCIAL INFORMATION ITEM 1. FINANCIAL STATEMENTS PETROTERRA CORP. BALANCE SHEETS AS OF SEPTEMBER 30, 2015 AND MARCH 31, 2015 (Unaudited) September 30, 2015 March 31, 2015 ASSETS Current assets Cash $ 20,082 $ - Prepaid expenses 5,625 1,875 Total current assets 25,707 1,875 Oil & Gas Exploration 737,500 737,500 Fixed Assets, net of accumulated depreciation of $693 and $462 as of September 30, 2015 and March 31, 2015, respectively 2,079 2,310 Website, net of accumulated amortization of $16,178 and $11,502, as of September 30, 2015 and March 31, 2015, respectively 13,625 18,301 Total Assets $ 778,911 $ 759,986 LIABILITIES AND SHAREHOLDERS’ DEFICIENCY Current Liabilities Bank overdraft $ - $ 435 Accounts payable and accrued expenses 100,915 121,708 Accrued liabilities, director 22,500 25,000 Notes payable, related-party 10,118 10,118 Total current liabilities 133,533 157,261 Total liabilities 133,533 157,261 Shareholders’ Deficiency Preferred Stock: $0.001 par value, 4,000,000 shares authorized; no shares issued and outstanding as of September 30, 2015 and March 31, 2015. - - Common stock; $0.001 par value, 40,000,000 shares authorized; 26,888,850 and 26,316,922 shares issued and outstanding as of September 30, 2015 and March 31, 2015, respectively 26,889 26,317 Additional paid-in capital 2,222,696 1,943,668 Accumulated deficit (1,604,207) (1,367,260) Total shareholders’ equity 645,378 602,725 Total liabilities and shareholders’ equity $ 778,911 $ 759,986 The accompanying notes are an integral part of these financial statements. F-1 EDGAR Stream is a copyright of Issuer Direct Corporation, all rights reserved. PETROTERRA CORP. STATEMENTS OF OPERATIONS FOR THE THREE AND SIX MONTHS ENDED SEPTEMBER 30, 2015 AND 2014 (Unaudited) Three months ended September 30, Six months ended September 30, 2015 2014 2015 2014 EXPENSES Lease property and exploration costs $ 33,269 $ 32,117 $ 46,686 $ 48,947 General and administrative expenses 42,905 42,274 80,838 81,452 Professional fees 49,371 62,752 91,823 95,538 Stock compensation expense 17,600 41,000 17,600 41,000 Net loss from Operation before Taxes (143,145) (178,143) (236,947) (266,937) PROVISION FOR INCOME TAXES - - - - NET LOSS $ (143,145) $ (178,143) $ (236,947) $ (266,937) (LOSS) PER COMMON SHARE -BASIC AND DILUTED $ (0.01) $ (0.01) $ (0.01) $ (0.01) WEIGHTED AVERAGE NUMBER OF COMMON SHARES OUTSTANDING 26,589,887 25,809,039 26,609,200 25,726,531 The accompanying notes are an integral part of these financial statements. F-2 EDGAR Stream is a copyright of Issuer Direct Corporation, all rights reserved. PETROTERRA CORP. STATEMENTS OF CASH FLOWS FOR THE SIX MONTHS ENDED SEPTEMBER 30, 2015 AND 2014 (Unaudited) Six months Ended September 30, 2015 2014 OPERATING ACTIVITIES Net income (loss) $ (236,947) $ (266,937) Adjustments to reconcile net income (loss) to net cash used in operating activities: Depreciation and amortization 4,907 4,650 Common stock issued for Services 17,600 41,000 Increase (decrease) in: Bank overdraft (435) - Accounts payables and accrued liabilities (20,793) 26,025 Prepaids (3,750) (5,625) Accrued payroll, officer (2,500) (5,000) Net cash used in operating activities (241,918) (205,887) INVESTING ACTIVITIES Investment in fixed assets - (2,772) Investment in Oil & Gas Exploration - (100,000) Net cash used in investing activities - (102,772) FINANCING ACTIVITIES Sales of Common stock 262,000 322,500 Net cash provided by financing activities 262,000 322,500 NET INCREASE (DECREASE) IN CASH AND CASH EQUIVALENTS 20,082 13,841 CASH AND CASH EQUIVALENTS -BEGINNING OF PERIOD - 9,037 CASH AND CASH EQUIVALENTS -END OF PERIOD $ 20,082 $ 22,878 SUPPLEMENTAL DISCLOSURE OF CASH FLOW INFORMATION: Cash paid for interest $ - $ - Cash paid for taxes $ - $ - NON-CASH INVESTING AND FINANCING ACTIVITIES: Common stock issued for services $ 17,600 $ 41,000 Common stock issued for the acquisition of land lease $ - $ 187,500 The accompanying notes are an integral part of these financial statements. F-3 EDGAR Stream is a copyright of Issuer Direct Corporation, all rights reserved. PETROTERRA CORP. Notes To The Financial Statements September 30, 2015 (Unaudited) 1. ORGANIZATION AND BUSINESS OPERATIONS PetroTerra Corp. (the “Company”) was incorporated under the laws of the State of Nevada, on July 25, 2008. The Company is an independent exploration and development company focused on the acquisition of property (or property leases enabling us to explore and exploit such property) that we believe may contain extractable oil and/or gas. The Company plans to identify, evaluate and acquire oil and gas exploration and development opportunities primarily within the United States. The Company has not generated any revenue to date and consequently its operations are subject to all risks inherent in the establishment of a new business enterprise. 2. GOING CONCERN The financial statements have been prepared on a going concern basis which assumes the Company will be able to realize its assets and discharge its liabilities in the normal course of business for the foreseeable future. The Company has incurred losses since inception resulting in an accumulated deficit of $1,604,207 as of September 30, 2015 and further losses are anticipated in the development of its business raising substantial doubt about the Company’s ability to continue as a going concern. The ability to continue as a going concern is dependent upon the Company generating profitable operations in the future and/or obtaining the necessary financing to meet its obligations and repay its liabilities, which have arisen from normal business operations as they come due. Management intends to finance operating costs over the next twelve months with existing cash on hand loans from our director and/or private placements of common stock. 3. SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES Basis of Presentation The financial statements of the Company have been prepared in accordance with generally accepted accounting principles in the United States of America and are presented in US dollars. These statements reflect all adjustments, including of normal recurring adjustments, which, in the opinion of management, are necessary for fair presentation of the information contained therein. It is suggested that these unaudited interim financial statements be read in conjunction with the financial statements of the Company for the year ended March 31, 2015 and notes thereto included in the Company’s annual report on Form 10-K.
Recommended publications
  • CRYSTAL PEAK MINERALS INC. (Formerly EPM Mining Ventures Inc.)
    CRYSTAL PEAK MINERALS INC. (Formerly EPM Mining Ventures Inc.) MANAGEMENT DISCUSSION AND ANALYSIS For the Three Months Ended March 31, 2016 CRYSTAL PEAK MINERALS INC. (Formerly EPM Mining Ventures Inc.) Management Discussion and Analysis For the Three Months Ended March 31, 2016 This Management Discussion and Analysis (“MD&A”) of Crystal Peak Minerals Inc. (“CPM”) (formerly EPM Mining Ventures Inc. or “EPM”), together with its subsidiaries (collectively the “Company”), is dated May 19, 2016 and provides an analysis of the Company’s performance and financial condition for the three months ended March 31, 2016. CPM is listed on the TSX Venture Exchange (“TSXV”) and its common shares trade under the symbol “CPM” (formerly “EPK”). The Company’s common shares also trade on the OTCQX International (“OTCQX”) under the ticker symbol “CPMMF” (formerly “EPKMF”). This MD&A should be read in conjunction with the Company’s unaudited condensed interim consolidated financial statements (the “Interim Financial Statements”) for the three months ended March 31, 2016, including the related note disclosures. The Company’s Interim Financial Statements are prepared in accordance with International Financial Reporting Standards (“IFRS”). The Interim Financial Statements have been prepared under the historical cost convention, except in the case of fair value of certain items, and unless specifically indicated otherwise, are presented in United States dollars. The Interim Financial Statements, along with Certifications of Annual and Interim Filings and press releases, are available on the Canadian System for Electronic Document Analysis and Retrieval (SEDAR) at www.sedar.com . Michael Blois, MBL Pr. Eng., is the Qualified Person in accordance with Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects (“NI 43-101”) who is responsible for the mineral processing and metallurgical testing, recovery methods, infrastructure, capital cost, and operating cost estimates described in this MD&A.
    [Show full text]
  • Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning
    sustainability Review Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning Juliana Segura-Salazar * ID and Luís Marcelo Tavares Department of Metallurgical and Materials Engineering, Universidade Federal do Rio de Janeiro—COPPE/UFRJ, Cx. Postal 68505, CEP 21941-972, Rio de Janeiro, RJ, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-21-2290-1544 (ext. 237/238) Received: 23 February 2018; Accepted: 24 April 2018; Published: 4 May 2018 Abstract: Sustainability science has received progressively greater attention worldwide, given the growing environmental concerns and socioeconomic inequity, both largely resulting from a prevailing global economic model that has prioritized profits. It is now widely recognized that mankind needs to adopt measures to change the currently unsustainable production and consumption patterns. The minerals industry plays a fundamental role in this context, having received attention through various initiatives over the last decades. Several of these have been, however, questioned in practice. Indeed, a consensus on the implications of sustainability in the minerals industry has not yet been reached. The present work aims to deepen the discussion on how the mineral sector can improve its sustainability. An exhaustive literature review of peer-reviewed academic articles published on the topic in English over the last 25 years, as well as complementary references, has been carried out. From this, it became clear that there is a need to build a better definition of sustainability for the mineral sector, which has been proposed here from a more holistic viewpoint. Finally, and in light of this new perspective, several of the trade-offs and synergies related to sustainability of the minerals industry are discussed in a cross-sectional manner.
    [Show full text]
  • Conflicting Narratives of Deep Sea Mining
    sustainability Review Conflicting Narratives of Deep Sea Mining Axel Hallgren 1 and Anders Hansson 1,2,* 1 Department of Thematic Studies: Environmental Change, Linköping University, S-581 83 Linköping, Sweden; [email protected] 2 Centre for Climate Science and Policy Research (CSPR), Linköping University, S-581 83 Linköping, Sweden * Correspondence: [email protected] Abstract: As land-based mining industries face increasing complexities, e.g., diminishing return on investments, environmental degradation, and geopolitical tensions, governments are searching for alternatives. Following decades of anticipation, technological innovation, and exploration, deep seabed mining (DSM) in the oceans has, according to the mining industry and other proponents, moved closer to implementation. The DSM industry is currently waiting for international regulations that will guide future exploitation. This paper aims to provide an overview of the current status of DSM and structure ongoing key discussions and tensions prevalent in scientific literature. A narrative review method is applied, and the analysis inductively structures four narratives in the results section: (1) a green economy in a blue world, (2) the sharing of DSM profits, (3) the depths of the unknown, and (4) let the minerals be. The paper concludes that some narratives are conflicting, but the policy path that currently dominates has a preponderance towards Narrative 1—encouraging industrial mining in the near future based on current knowledge—and does not reflect current wider discussions in the literature. The paper suggests that the regulatory process and discussions should be opened up and more perspectives, such as if DSM is morally appropriate (Narrative 4), should be taken into consideration.
    [Show full text]
  • Transportation & Logistics Systems, Inc
    SECURITIES & EXCHANGE COMMISSION EDGAR FILING Transportation & Logistics Systems, Inc. Form: 10-Q/A Date Filed: 2017-08-22 Corporate Issuer CIK: 1463208 © Copyright 2020, Issuer Direct Corporation. All Right Reserved. Distribution of this document is strictly prohibited, subject to the terms of use. UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-Q/A (Amendment No. 1) [X] QUARTERLY REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the quarterly period ended December 31, 2016 [ ] TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from __________ to __________ Commission File No. 001-34970 PetroTerra Corp. (Exact Name of Issuer as specified in its charter) Nevada 7380 26-3106763 (State or jurisdiction Primary Standard Industrial IRS Employer of incorporation or organization) Classification Code Number Identification Number 422 East Vermijo Avenue, Suite 313 Colorado Springs, Colorado 80903 (Address of principal executive offices) 719-219-6404 (Issuer’s telephone number) (Former name, former address and former fiscal year, if changed since last report.) Indicate by checkmark whether the issuer: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Exchange Act during the past 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes [X] No [ ] Indicate by check mark whether the registrant has submitted electronically and posted on its corporate Web site, if any, every Interactive Data File required to be submitted and posted pursuant to Rule 405 of Regulations S-T (§232.405 of this chapter) during the preceding 12 months (or for shorter period that the registrant was required to submit and post such files).
    [Show full text]
  • Mineral Depletion and Peak Production
    POLINARES is a project designed to help identify the main global challenges relating to competition for access to resources, and to propose new approaches to collaborative solutions POLINARES working paper n. 7 September 2010 Mineral Depletion and Peak Production By Magnus Ericsson and Patrik Söderholm The project is funded under Socio‐economic Sciences & Humanities grant agreement no. 224516 and is led by the Centre for Energy, Petroleum and Mineral Law and Policy (CEPMLP) at the University of Dundee and includes the following partners: University of Dundee, Clingendael International Energy Programme, Bundesanstalt fur Geowissenschaften und Rohstoffe, Centre National de la Recherche Scientifique, ENERDATA, Raw Materials Group, University of Westminster, Fondazione Eni Enrico Mattei, Gulf Research Centre Foundation, The Hague Centre for Strategic Studies, Fraunhofer Institute for Systems and Innovation Research, Osrodek Studiow Wschodnich. POLINARES D1.1 – Framework for understanding the sources of conflict and tension Grant Agreement: 224516 Dissemination Level: PU 6. Mineral Depletion and Peak Production Magnus Ericsson and Patrik Söderholm Introduction Natural resources are essential for the economic development of human societies and cultures, and fears of an impending depletion of these resources have been expressed (at least) since antiquity (e.g., Maurice and Smithson, 1984). The most recent – and overall very influential – predictions of resource depletion are those concerning the production of oil. Advocates of the so-called peak oil concept suggest that oil production is close to an unavoidable (geologically-determined) peak that could have serious consequences for the global economy and society as a whole.1 The ‘peak’ concept has increasingly influenced the debate over mineral depletion as well, and some analysts claim that world production of many minerals (e.g., lead, mercury, cadmium etc.) has already peaked or are close to peaking (Vernon, 2007, Bleischwitz et al., 2009).
    [Show full text]
  • UNIVERSITY of DERBY Competition and Collaboration in the Extractive Industries in a World of Resource Scarcity Using a Game Theo
    Competition and collaboration in the extractive industries in a world of resource scarcity using a Game theory approach Item Type Thesis or dissertation Authors Crowther, Shahla Seifi Citation Crowther S S (2020); Competition and collaboration in the extractive industries in a world of resource scarcity using a Game theory approach; Unpublished PhD thesis Publisher University of Derby Download date 30/09/2021 19:14:02 Link to Item http://hdl.handle.net/10545/625068 UNIVERSITY OF DERBY Competition and collaboration in the extractive industries in a world of resource scarcity using a Game theory approach SHAHLA SEIFI CROWTHER Doctor of Philosophy 2020 I Table of contents Page Chapter 1 Introduction to research 1 1.1 Introduction to topic 1 1.2 Problem statement 4 1.3 Aims and Objectives of the thesis 6 1.4 Research questions 8 1.5 Contribution to knowledge 9 1.6 Structure of the thesis 9 1.7 Chapter summary 11 Chapter 2 Literature Review 12 2.1 Summary 12 2.2 Introduction 12 2.3 The Gaia Theory 20 2.4 The Brundtland Report 21 2.4.1 Sustainable development 24 2.5 Depleting resources 26 2.5.1 Geopolitical considerations 28 2.5.2 Extent of remaining resources 28 2.6 Reacting to resource depletion 32 2.7 Manufacturing and the external environment 37 2.8 Manufacturing firms and resource depletion 39 2.8.1 Transaction Cost Theory 39 2.82 The market and its inefficiencies 41 2.9 Critiquing sustainability 44 2.10 Strategies for dealing with resource depletion 45 2.10.1 The level of the firm 46 2.10.1.1 The national level 46 2.10.1.2 The global level
    [Show full text]
  • CPM Investor Presentation 2019-12
    Plant nutrition for a healthier world TSX-V: CPM | OTCQX: CPMMF | Investor Presentation | Q4 2019 CRYSTAL PEAK MINERALS DISCLAIMER This presentation is for informational purposes and does not constitute an offer or a solicitation of an offer to purchase securities. This presentation contains "forward-looking information" within the meaning of applicable Canadian securities legislation. Forward-looking information includes, but is not limited to, statements related to activities, events or developments that Crystal Peak Minerals Inc. (“CPM” or the “Company”) expects or anticipates will or may occur in the future, including, without limitation; statements related to the economic analysis of the Project; the Feasibility Study; mineral reserves; mineral resource estimate; the permitting process; environmental assessments; business strategy; objectives and goals; and exploration of the Sevier Playa Project. Forward-looking information is often identified by the use of words such as "plans", "planning", "planned", "expects" or "looking forward", "does not expect", "continues", "scheduled", "estimates", "forecasts", "intends", "potential", "anticipates", "does not anticipate", or "belief", or describes a "goal", or variation of such words and phrases or state that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. Forward-looking information is based on factors and assumptions made by management and considered reasonable at the time such information is provided. Forward-looking information involves known and unknown risks, uncertainties and other factors that may cause the actual results, performance, or achievements to be materially different from those expressed or implied by the forward-looking information. The Company’s Feasibility Study (the “FS”) should be considered incomplete.
    [Show full text]
  • General and Social Sector and Psus, Government of Maharashtra
    Report of the Comptroller and Auditor General of India on General & Social Sector and Public Sector Undertakings for the year ended 31 March 2019 GOVERNMENT OF MAHARASHTRA Report No. 3 of the year 2020 TABLE OF CONTENTS Reference Paragraph Page No. Preface vii PART-A (GENERAL AND SOCIAL SECTOR) CHAPTER I INTRODUCTION About this Report 1.1 1 Audited Entity Profile 1.2 1 Authority for Audit 1.3 2 Organisational Structure of the Offices of the Principal 1.4 2 Accountant General (Audit)-I, Mumbai and the Accountant General (Audit)-II, Nagpur Planning and Conduct of Audit 1.5 3 Significant Audit Observations 1.6 3 Responsiveness of Government to Audit 1.7 6 CHAPTER II AUDIT OF TRANSACTIONS Soil and Water Conservation Department 2.1 9 Implementation of Jalyukta Shivar Abhiyan Urban Development Department Mapping of underground utility services 2.2 19 Medical Education and Drugs Department Strengthening/upgradation of State Government 2.3 27 Medical Colleges for starting post graduate courses and creating post graduate seats Urban Development Department 2.4 38 Non-recovery of premium as per the lease agreement Urban Development Department Loss of revenue due to non-recovery of development 2.5 40 charges at enhanced rate Housing Department 2.6 42 Loss on purchase of land Housing Department 2.7 44 Undue benefit to a developer Tribal Development Department 2.8 46 Idle expenditure Tribal Development Department Blocking of funds under the scheme of supply of Oil 2.9 48 pumps and HDPE pipes to Tribal farmers Social Justice and Special Assistance Department 2.10 50 Irregular construction Public Health Department 2.11 52 Idle expenditure on establishment of Trauma Care Centre Higher and Technical Education Department Irregular release of excess amount of grant-in-aid to the 2.12 53 non-government technical institutes Report No.
    [Show full text]
  • Minerals, Metals and Sustainability
    Minerals, Metals and Sustainability Meeting Future Material Needs W.J. Rankin, CSIRO Contents Preface xv Acknowledgements xvii 1 Introduction 1 2 Materials and the materials cycle 5 2.1 Natural resources 5 2.2 Materials, goods and services 6 2.3 The material groups 9 2.3.1 Biomass 9 2.3.2 Plastics 10 2.3.3 Metals and alloys 10 2.3.4 Silicates and other inorganic compounds 10 2.4 The materials cycle 12 2.5 The recyclability of materials 14 2.6 Quantifying the materials cycle 15 2.6.1 Materials and energy balances 16 2.6.2 Material flow analysis 16 2.7 References 23 2.8 Useful sources of information 24 3 An introduction to Earth 25 3.1 The crust 25 3.2 The hydrosphere and biosphere 26 3.2.1 Life on Earth 27 3.2.2 The Earth's biomes 28 3.2.3 Ecosystem services 30 3.3 Some implications of the basic laws of science 31 3.3.1 Thermal energy flows to the biosphere and hydrosphere 32 3.3.2 The greenhouse effect 32 3.3.3 The Sun as driver of both change and order 33 3.4 The biogeochemical cycles 34 3.4.1 The carbon and oxygen cycles 35 3.4.2 The water cycle 36 3.4.3 The nitrogen cycle 37 3.4.4 The phosphorus cycle 38 vi Minerals, Metals and Sustainability 3.4.5 The sulfur cycle 38 3.5 References 40 3.6 Useful sources of information 40 4 An introduction to sustainability 41 4.1 The environmental context 42 4.1.1 The state of the environment 42 4.1.2 The ecological footprint 43 4.1.3 The tragedy of the commons 46 4.2 A brief history of the idea of sustainability 47 4.2.1 The rising public awareness 47 4.2.2 International developments 47 4.2.3 Corporate
    [Show full text]
  • Critical Mineral Resources of the United States— an Introduction
    Critical Mineral Resources of the United States— An Introduction Chapter A of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 francium radium rutherfordium dubnium seaborgium bohrium
    [Show full text]
  • 13. Mineral Resource Scarcity
    13. Mineral resource scarcity Marisa Vieira1,2*, Mark A.J. Huijbregts1 1 Department of Environmental Science, Radboud University Nijmegen, The Netherlands 2 PRé Consultants b.v., The Netherlands * [email protected] Based on: Vieira et al. (2012) and Vieira et al. (2016). 13.1. Areas of protection and environmental mechanisms covered Description of impact pathway Mineral resources are key raw materials in many industrial sectors and hence their demand is increasing. Although it has been argued that mineral resources are available in almost infinite amounts in the earth crust, the actual availability of a mineral primarily depends on ore grades (Gerst 2008). The impact patway of mineral resource extraction is illustrated in Figure 13.1 and described in equation 13.1. When a mineral is extracted (ME), the overall ore grade of that mineral declines (OG) (Mudd 2007; Prior et al. 2012). This mechanism can be captured by cumulative grade-tonnage relationships, as shown by Vieira et al. (2012). The smaller the ore grade, the larger the amount of ore that needs to be produced for extracting the same amount of mineral resource (OP). According to Prior et al. (2012), ore grade decline can be used as an indicator for a range of societal impacts. For instance, larger amounts of ore produced for the same unit of mineral output, implies more waste (waste rock, tailings) to be handled. The larger the future mineral resource extraction (R) the larger becomes the overall increase of ore produced. Consequently, the future metal extraction is relevant and should be considered. The average increase in ore amount per kg of mineral extracted considering all future mineral resource yet to be extracted is defined as the surplus ore potential, here the life cycle impact indicator.
    [Show full text]
  • Urgent Policy Considerations for a Sustainable Society
    The World 5 model; Peak metals, minerals, energy, wealth, food and population; urgent policy considerations for a sustainable society Harald Ulrik Sverdrup1 Deniz Koca1, and Kristín Vala Ragnarsdóttir2 1Chemical Engineering, University of Lund, SE-221 00, Lund, Sweden 2Earth Sciences, University of Iceland, IS-101 Reykjavik, Iceland Abstract In this paper we show that several metals, elements and energy resources are about to run into scarcity within the next decades, and most elements within some centuries. A new global systems model was assembled to analyse this scarcity as a continuation of the model used in the Limits-to-Growth World3 model. We show that this scarcity will lead to “peak wealth”, “peak population”, “peak costs”, “peak junk”, “peak problems” and possibly “peak civilization”, unless some urgent measures are systematically taken throughout the world. Scarcity implies that materials that underpin modern society will largely be unavailable for global mass production of goods. The material volumes that can be supplied from fossil reserves will be reduced with respect to today and all materials will go up sharply in price. The future resource supply is thus unsustainable as long as resource use continues as today. The creation of money from conversion of resources and work, as well as the current extensive borrowing from the future, cause concerns that peak oil and peak materials may lead to “peak wealth” and the end of the golden age we currently have for developed nations. Our policy recommendations are that governments must take this issue seriously and immediately start preparing for legislations that can close material cycles, optimize energy use and minimize all types of irreversible material losses as soon as possible.
    [Show full text]