QUAD: Overview and Recent Developments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detection and Exploitation of Small Correlations in Stream Ciphers
Detection and Exploitation of Small Correlations in Stream Ciphers Masterthesis conducted under the guidance of Prof. Dr. Joachim Rosenthal and Dr. Gérard Maze Institute of Mathematics, University of Zurich 2008 Urs Wagner Outline This thesis gives an overview of stream ciphers based on linear feedback shift registers (LFSR) and their vulnerability to correlation attacks. In the rst chapter, a short introduction to symmetric key ciphers is given. The main focus hereby is on LFSR based stream ciphers. Further, the principles of LFSR are presented. The chapter is then closed by a stream cipher example, the Gee Generator. The second chapter treats the general approach of correlation attacks. Moreover a correlation attack is mounted on the Gee Generator and the practical results are presented. Boolean functions play an important role in stream cipher designs. The Walsh transform, a tool to analyze the cryptographic properties of Boolean functions, is introduced in chapter 3. Additionally, the cryptographic properties themselves are discussed. In the fourth chapter, an improved kind of correlation attack -the fast correlation attack- is presented. It exploits the same weaknesses in the stream cipher designs as the correlation attack, the mode of operation is however dierent. In the last chapter, the insights gained in the previous chapters are used to suggest an attack on a stream cipher by Philips, named Hitag 2. 1 Acknowledgments This thesis was written in the course of my master's studies at the University of Zurich. I am grateful to Prof. Joachim Rosenthal who gave me the opportunity to write my master thesis in cryptography. Special thanks go to Dr. -
Hardness Evaluation of Solving MQ Problems
MQ Challenge: Hardness Evaluation of Solving MQ Problems Takanori Yasuda (ISIT), Xavier Dahan (ISIT), Yun-Ju Huang (Kyushu Univ.), Tsuyoshi Takagi (Kyushu Univ.), Kouichi Sakurai (Kyushu Univ., ISIT) This work was supported by “Strategic Information and Communications R&D Promotion Programme (SCOPE), no. 0159-0091”, Ministry of Internal Affairs and Communications, Japan. The first author is supported by Grant-in-Aid for Young Scientists (B), Grant number 24740078. Fukuoka MQ challenge MQ challenge started on April 1st. https://www.mqchallenge.org/ ETSI Quantum Safe Workshop 2015/4/3 2 Why we need MQ challenge? • Several public key cryptosystems held contests which solve the associated basic mathematical problems. o RSA challenge(RSA Laboratories), ECC challenge(Certicom), Lattice challenge(TU Darmstadt) • Lattice challenge (http://www.latticechallenge.org/) o Target: Short vector problem o 2008 – now continued • Multivariate public-key cryptsystem (MPKC) also need to evaluate the current state-of-the-art in practical MQ problem solvers. We planed to hold MQ challenge. ETSI Quantum Safe Workshop 2015/4/3 3 Multivariate Public Key Cryptosystem (MPKC) • Advantage o Candidate for post-quantum cryptography o Used for both encryption and signature schemes • Encryption: Simple Matrix scheme (ABC scheme), ZHFE scheme • Signature: UOV, Rainbow o Efficient encryption and decryption and signature generation and verification. • Problems o Exact estimate of security of MPKC schemes o Huge length of secret and public keys in comparison with RSA o New application and function ETSI Quantum Safe Workshop 2015/4/3 4 MQ problem MPKC are public key cryptosystems whose security depends on the difficulty in solving a system of multivariate quadratic polynomials with coefficients in a finite field . -
Side Channel Analysis Attacks on Stream Ciphers
Side Channel Analysis Attacks on Stream Ciphers Daehyun Strobel 23.03.2009 Masterarbeit Ruhr-Universität Bochum Lehrstuhl Embedded Security Prof. Dr.-Ing. Christof Paar Betreuer: Dipl.-Ing. Markus Kasper Erklärung Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. Bochum, 23.März 2009 Daehyun Strobel ii Abstract In this thesis, we present results from practical differential power analysis attacks on the stream ciphers Grain and Trivium. While most published works on practical side channel analysis describe attacks on block ciphers, this work is among the first ones giving report on practical results of power analysis attacks on stream ciphers. Power analyses of stream ciphers require different methods than the ones used in todays most popular attacks. While for the majority of block ciphers it is sufficient to attack the first or last round only, to analyze a stream cipher typically the information leakages of many rounds have to be considered. Furthermore the analysis of hardware implementations of stream ciphers based on feedback shift registers inevitably leads to methods combining algebraic attacks with methods from the field of side channel analysis. Instead of a direct recovery of key bits, only terms composed of several key bits and bits from the initialization vector can be recovered. An attacker first has to identify a sufficient set of accessible terms to finally solve for the key bits. -
Petawatt and Exawatt Class Lasers Worldwide
Petawatt and exawatt class lasers worldwide Colin Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe Chanteloup, Enam Chowdhury, Almantas Galvanauskas, Leonida Gizzi, Joachim Hein, David Hillier, et al. To cite this version: Colin Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe Chanteloup, et al.. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, Cambridge University Press, 2019, 7, 10.1017/hpl.2019.36. hal-03037682 HAL Id: hal-03037682 https://hal.archives-ouvertes.fr/hal-03037682 Submitted on 3 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High Power Laser Science and Engineering, (2019), Vol. 7, e54, 54 pages. © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/hpl.2019.36 Petawatt and exawatt class lasers worldwide Colin N. Danson1;2;3, Constantin Haefner4;5;6, Jake Bromage7, Thomas Butcher8, Jean-Christophe F. Chanteloup9, Enam A. Chowdhury10, Almantas Galvanauskas11, Leonida A. -
Hardware Implementation of Four Byte Per Clock RC4 Algorithm Rourab Paul, Amlan Chakrabarti, Senior Member, IEEE, and Ranjan Ghosh
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1 Hardware Implementation of four byte per clock RC4 algorithm Rourab Paul, Amlan Chakrabarti, Senior Member, IEEE, and Ranjan Ghosh, Abstract—In the field of cryptography till date the 2-byte in 1-clock is the best known RC4 hardware design [1], while 1-byte in 1-clock [2], and the 1-byte in 3 clocks [3][4] are the best known implementation. The design algorithm in[2] considers two consecutive bytes together and processes them in 2 clocks. The design [1] is a pipelining architecture of [2]. The design of 1-byte in 3-clocks is too much modular and clock hungry. In this paper considering the RC4 algorithm, as it is, a simpler RC4 hardware design providing higher throughput is proposed in which 6 different architecture has been proposed. In design 1, 1-byte is processed in 1-clock, design 2 is a dynamic KSA-PRGA architecture of Design 1. Design 3 can process 2 byte in a single clock, where as Design 4 is Dynamic KSA-PRGA architecture of Design 3. Design 5 and Design 6 are parallelization architecture design 2 and design 4 which can compute 4 byte in a single clock. The maturity in terms of throughput, power consumption and resource usage, has been achieved from design 1 to design 6. The RC4 encryption and decryption designs are respectively embedded on two FPGA boards as co-processor hardware, the communication between the two boards performed using Ethernet. Keywords—Computer Society, IEEEtran, journal, LATEX, paper, template. -
On the Security of IV Dependent Stream Ciphers
On the Security of IV Dependent Stream Ciphers Côme Berbain and Henri Gilbert France Telecom R&D {[email protected]} research & development Stream Ciphers IV-less IV-dependent key K key K IV (initial value) number ? generator keystream keystream plaintext ⊕ ciphertext plaintext ⊕ ciphertext e.g. RC4, Shrinking Generator e.g. SNOW, Scream, eSTREAM ciphers well founded theory [S81,Y82,BM84] less unanimously agreed theory practical limitations: prior work [RC94, HN01, Z06] - no reuse of K numerous chosen IV attacks - synchronisation - key and IV setup not well understood IV setup – H. Gilbert (2) research & developement Orange Group Outline security requirements on IV-dependent stream ciphers whole cipher key and IV setup key and IV setup constructions satisfying these requirements blockcipher based tree based application example: QUAD incorporate key and IV setup in QUAD's provable security argument IV setup – H. Gilbert (3) research & developement Orange Group Security in IV-less case: PRNG notion m K∈R{0,1} number truly random VS generator g generator g g(K) ∈{0,1}L L OR Z ∈R{0,1} 1 input A 0 or 1 PRNG A tests number distributions: Adv g (A) = PrK [A(g(K)) = 1] − PrZ [A(Z) = 1] PRNG PRNG Advg (t) = maxA,T(A)≤t (Advg (A)) PRNG 80 g is a secure cipher ⇔ g is a PRNG ⇔ Advg (t < 2 ) <<1 IV setup – H. Gilbert (4) research & developement Orange Group Security in IV-dependent case: PRF notion stream cipher perfect random fct. IV∈ {0,1}n function generator VSOR g* gK G = {gK} gK(IV) q oracle queries • A 0 or 1 PRF gK g* A tests function distributions: Adv G (A) = Pr[A = 1] − Pr[A = 1] PRF PRF Adv G (t, q) = max A (Adv G (A)) PRF 80 40 G is a secure cipher ⇔ G is a PRF ⇔ Adv G (t < 2 ,2 ) << 1 IV setup – H. -
*UPDATED Canadian Values 07-04 201 7/26/2016 4:42:21 PM *UPDATED Canadian Values 07-04 202 COIN VALUES: CANADA 02 .0 .0 12
CANADIAN VALUES By Michael Findlay Large Cents VG-8 F-12 VF-20 EF-40 MS-60 MS-63R 1917 1.00 1.25 1.50 2.50 13. 45. CANADA COIN VALUES: 1918 1.00 1.25 1.50 2.50 13. 45. 1919 1.00 1.25 1.50 2.50 13. 45. 1920 1.00 1.25 1.50 3.00 18. 70. CANADIAN COIN VALUES Small Cents PRICE GUIDE VG-8 F-12 VF-20 EF-40 MS-60 MS-63R GEORGE V All prices are in U.S. dollars LargeL Cents C t 1920 0.20 0.35 0.75 1.50 12. 45. Canadian Coin Values is a comprehensive retail value VG-8 F-12 VF-20 EF-40 MS-60 MS-63R 1921 0.50 0.75 1.50 4.00 30. 250. guide of Canadian coins published online regularly at Coin VICTORIA 1922 20. 23. 28. 40. 200. 1200. World’s website. Canadian Coin Values is provided as a 1858 70. 90. 120. 200. 475. 1800. 1923 30. 33. 42. 55. 250. 2000. reader service to collectors desiring independent informa- 1858 Coin Turn NI NI 2500. 5000. BNE BNE 1924 6.00 8.00 11. 16. 120. 800. tion about a coin’s potential retail value. 1859 4.00 5.00 6.00 10. 50. 200. 1925 25. 28. 35. 45. 200. 900. Sources for pricing include actual transactions, public auc- 1859 Brass 16000. 22000. 30000. BNE BNE BNE 1926 3.50 4.50 7.00 12. 90. 650. tions, fi xed-price lists and any additional information acquired 1859 Dbl P 9 #1 225. -
9/11 Report”), July 2, 2004, Pp
Final FM.1pp 7/17/04 5:25 PM Page i THE 9/11 COMMISSION REPORT Final FM.1pp 7/17/04 5:25 PM Page v CONTENTS List of Illustrations and Tables ix Member List xi Staff List xiii–xiv Preface xv 1. “WE HAVE SOME PLANES” 1 1.1 Inside the Four Flights 1 1.2 Improvising a Homeland Defense 14 1.3 National Crisis Management 35 2. THE FOUNDATION OF THE NEW TERRORISM 47 2.1 A Declaration of War 47 2.2 Bin Ladin’s Appeal in the Islamic World 48 2.3 The Rise of Bin Ladin and al Qaeda (1988–1992) 55 2.4 Building an Organization, Declaring War on the United States (1992–1996) 59 2.5 Al Qaeda’s Renewal in Afghanistan (1996–1998) 63 3. COUNTERTERRORISM EVOLVES 71 3.1 From the Old Terrorism to the New: The First World Trade Center Bombing 71 3.2 Adaptation—and Nonadaptation— ...in the Law Enforcement Community 73 3.3 . and in the Federal Aviation Administration 82 3.4 . and in the Intelligence Community 86 v Final FM.1pp 7/17/04 5:25 PM Page vi 3.5 . and in the State Department and the Defense Department 93 3.6 . and in the White House 98 3.7 . and in the Congress 102 4. RESPONSES TO AL QAEDA’S INITIAL ASSAULTS 108 4.1 Before the Bombings in Kenya and Tanzania 108 4.2 Crisis:August 1998 115 4.3 Diplomacy 121 4.4 Covert Action 126 4.5 Searching for Fresh Options 134 5. -
BRISK: Dynamic Encryption Based Cipher for Long Term Security
sensors Article BRISK: Dynamic Encryption Based Cipher for Long Term Security Ashutosh Dhar Dwivedi Cyber Security Section, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected] or [email protected] Abstract: Several emerging areas like the Internet of Things, sensor networks, healthcare and dis- tributed networks feature resource-constrained devices that share secure and privacy-preserving data to accomplish some goal. The majority of standard cryptographic algorithms do not fit with these constrained devices due to heavy cryptographic components. In this paper, a new block cipher, BRISK, is proposed with a block size of 32-bit. The cipher design is straightforward due to simple round operations, and these operations can be efficiently run in hardware and suitable for software. Another major concept used with this cipher is dynamism during encryption for each session; that is, instead of using the same encryption algorithm, participants use different ciphers for each session. Professor Lars R. Knudsen initially proposed dynamic encryption in 2015, where the sender picks a cipher from a large pool of ciphers to encrypt the data and send it along with the encrypted message. The receiver does not know about the encryption technique used before receiving the cipher along with the message. However, in the proposed algorithm, instead of choosing a new cipher, the process uses the same cipher for each session, but varies the cipher specifications from a given small pool, e.g., the number of rounds, cipher components, etc. Therefore, the dynamism concept is used here in a different way. -
Ascon (A Submission to CAESAR)
Ascon (A Submission to CAESAR) Ch. Dobraunig1, M. Eichlseder1, F. Mendel1, M. Schl¨affer2 1IAIK, Graz University of Technology, Austria 2Infineon Technologies AG, Austria 22nd Crypto Day, Infineon, Munich Overview CAESAR Design of Ascon Security analysis Implementations 1 / 20 CAESAR CAESAR: Competition for Authenticated Encryption { Security, Applicability, and Robustness (2014{2018) http://competitions.cr.yp.to/caesar.html Inspired by AES, eStream, SHA-3 Authenticated Encryption Confidentiality as provided by block cipher modes Authenticity, Integrity as provided by MACs \it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes" { Kohno, Whiting, and Viega 2 / 20 CAESAR CAESAR: Competition for Authenticated Encryption { Security, Applicability, and Robustness (2014{2018) http://competitions.cr.yp.to/caesar.html Inspired by AES, eStream, SHA-3 Authenticated Encryption Confidentiality as provided by block cipher modes Authenticity, Integrity as provided by MACs \it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes" { Kohno, Whiting, and Viega 2 / 20 Generic compositions MAC-then-Encrypt (MtE) e.g. in SSL/TLS MAC M security depends on E and MAC E ∗ C T k Encrypt-and-MAC (E&M) ∗ e.g. in SSH E C M security depends on E and MAC MAC T Encrypt-then-MAC (EtM) ∗ IPSec, ISO/IEC 19772:2009 M E C provably secure MAC T 3 / 20 Tags for M = IV (N 1), M = IV (N 2), . ⊕ k ⊕ k are the key stream to read M1, M2,... (Keys for) E ∗ and MAC must be independent! Pitfalls: Dependent Keys (Confidentiality) Encrypt-and-MAC with CBC-MAC and CTR CTR CBC-MAC Nk1 Nk2 Nk` M1 M2 M` IV ··· EK EK ··· EK EK EK EK M1 M2 M` C1 C2 C` T What can an attacker do? 4 / 20 Pitfalls: Dependent Keys (Confidentiality) Encrypt-and-MAC with CBC-MAC and CTR CTR CBC-MAC Nk1 Nk2 Nk` M1 M2 M` IV ··· EK EK ··· EK EK EK EK M1 M2 M` C1 C2 C` T What can an attacker do? Tags for M = IV (N 1), M = IV (N 2), . -
Stream Cipher Designs: a Review
SCIENCE CHINA Information Sciences March 2020, Vol. 63 131101:1–131101:25 . REVIEW . https://doi.org/10.1007/s11432-018-9929-x Stream cipher designs: a review Lin JIAO1*, Yonglin HAO1 & Dengguo FENG1,2* 1 State Key Laboratory of Cryptology, Beijing 100878, China; 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China Received 13 August 2018/Accepted 30 June 2019/Published online 10 February 2020 Abstract Stream cipher is an important branch of symmetric cryptosystems, which takes obvious advan- tages in speed and scale of hardware implementation. It is suitable for using in the cases of massive data transfer or resource constraints, and has always been a hot and central research topic in cryptography. With the rapid development of network and communication technology, cipher algorithms play more and more crucial role in information security. Simultaneously, the application environment of cipher algorithms is in- creasingly complex, which challenges the existing cipher algorithms and calls for novel suitable designs. To accommodate new strict requirements and provide systematic scientific basis for future designs, this paper reviews the development history of stream ciphers, classifies and summarizes the design principles of typical stream ciphers in groups, briefly discusses the advantages and weakness of various stream ciphers in terms of security and implementation. Finally, it tries to foresee the prospective design directions of stream ciphers. Keywords stream cipher, survey, lightweight, authenticated encryption, homomorphic encryption Citation Jiao L, Hao Y L, Feng D G. Stream cipher designs: a review. Sci China Inf Sci, 2020, 63(3): 131101, https://doi.org/10.1007/s11432-018-9929-x 1 Introduction The widely applied e-commerce, e-government, along with the fast developing cloud computing, big data, have triggered high demands in both efficiency and security of information processing. -
Related-Key Impossible Boomerang Cryptanalysis on Lblock-S
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019 5717 Copyright ⓒ 2019 KSII Related-key Impossible Boomerang Cryptanalysis on LBlock-s Min Xie*, Qiya Zeng State Key Laboratory of Integrated Service Networks, Xidian University Xi’an 710071, China [e-mail: [email protected], [email protected]] *Corresponding author: Min Xie Received March 26, 2018; revised April 2, 2019; accepted May 3, 2019; published November 30, 2019 Abstract LBlock-s is the core block cipher of authentication encryption algorithm LAC, which uses the same structure of LBlock and an improved key schedule algorithm with better diffusion property. Using the differential properties of the key schedule algorithm and the cryptanalytic technique which combines impossible boomerang attacks with related-key attacks, a 15-round related-key impossible boomerang distinguisher is constructed for the first time. Based on the distinguisher, an attack on 22-round LBlock-s is proposed by adding 4 rounds on the top and 3 rounds at the bottom. The time complexity is about only 2 . 22-round encryptions and the data complexity is about 2 chosen plaintexts. Compared68 76 with published cryptanalysis results on LBlock-s, there has58 been a sharp decrease in time complexity and an ideal data complexity. Keywords: LBlock-s, lightweight block cipher, related-key, impossible differential, boomerang cryptanalysis This research was supported in part by the National Key Research and Development Program of China (Grant No. 2016YFB0800601) and Key Program of NSFC-Tongyong Union Foundation (Grant No. U1636209). http://doi.org/10.3837/tiis.2019.11.024 ISSN : 1976-7277 5718 Min Xie & Qiya Zeng: Related-key Impossible Boomerang Cryptanalysis on LBlock-s 1.