11C.7 Treating Landfalling Hurricanes As Mesoscale Convective Systems - a Paradigm Shift for Weather Forecast Operations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NCAR Annual Scientific Report April 1978 - March 1979 - Link Page Next PART0002
National Center for Atmospheric Research Annual Scientific Report April 1978-March 1979 Submitted to National Science Foundation by University Corporation for Atmospheric Research July 1979 * * iii11 1 CONTENTS INTRODUCTION v ATMOSPHERIC ANALYSIS AND PREDICTION DIVISION 1 Climate Section 7 Oceanography Section 15 Large-Scale Dynamics Section 19 Mesoscale Research Section 28 ATMOSPHERIC QUALITY DIVISION 37 In-Situ Measurements and Photochemical Modeling 39 Biosphere-Atmosphere Interaction 42 Gas and Aerosol Measurements 43 Global Observations, Modeling, and Optical Techniques 45 Reactive Gases and Particles 51 Thermospheric Dynamics and Aeronomy 53 Stratospheric-Tropospheric Exchange 56 Radioactive Aerosols and Effects 58 HIGH ALTITUDE OBSERVATORY 63 Solar Variability Section 65 Solar Atmosphere and Magnetic Fields Section 72 Coronal Physics Section 78 78 Interplanetary Physics Section 83 CONVECTIVE STORMS DIVISION 89 ADVANCED STUDY PROGRAM 113 ATMOSPHERIC TECHNOLOGY DIVISION 127 Research Aviation Facility 129 Computing Facility 141 Field Observing Facility 154 Research Systems Facility 163 Global Atmospheric Measurements Program 169 National Scientific Balloon Facility 176 PUBLICATIONS 183 v INTRODUCTION The UCAR-NSF contract for the operation of NCAR calls for UCAR to submit to NSF an annual scientific report "containing a scientific description of all programs conducted by NCAR staff and NCAR visitors during the previous year." The contract stipulates that the report should "include a description of the scientific problems placed in a larger context, accomplishments, and a listing of papers published." This document is designed to respond to that contract provision, and has as its primary audience those NSF staff members responsible for monitoring UCAR's performance in the operation of a national laboratory under NSF sponsorship. -
Homeowners Handbook to Prepare for Natural Disasters
HOMEOWNERS HANDBOOK HANDBOOK HOMEOWNERS DELAWARE HOMEOWNERS TO PREPARE FOR FOR TO PREPARE HANDBOOK TO PREPARE FOR NATURAL HAZARDSNATURAL NATURAL HAZARDS TORNADOES COASTAL STORMS SECOND EDITION SECOND Delaware Sea Grant Delaware FLOODS 50% FPO 15-0319-579-5k ACKNOWLEDGMENTS This handbook was developed as a cooperative project among the Delaware Emergency Management Agency (DEMA), the Delaware Department of Natural Resources and Environmental Control (DNREC) and the Delaware Sea Grant College Program (DESG). A key priority of this project partnership is to increase the resiliency of coastal communities to natural hazards. One major component of strong communities is enhancing individual resilience and recognizing that adjustments to day-to- day living are necessary. This book is designed to promote individual resilience, thereby creating a fortified community. The second edition of the handbook would not have been possible without the support of the following individuals who lent their valuable input and review: Mike Powell, Jennifer Pongratz, Ashley Norton, David Warga, Jesse Hayden (DNREC); Damaris Slawik (DEMA); Darrin Gordon, Austin Calaman (Lewes Board of Public Works); John Apple (Town of Bethany Beach Code Enforcement); Henry Baynum, Robin Davis (City of Lewes Building Department); John Callahan, Tina Callahan, Kevin Brinson (University of Delaware); David Christopher (Delaware Sea Grant); Kevin McLaughlin (KMD Design Inc.); Mark Jolly-Van Bodegraven, Pam Donnelly and Tammy Beeson (DESG Environmental Public Education Office). Original content from the first edition of the handbook was drafted with assistance from: Mike Powell, Greg Williams, Kim McKenna, Jennifer Wheatley, Tony Pratt, Jennifer de Mooy and Morgan Ellis (DNREC); Ed Strouse, Dave Carlson, and Don Knox (DEMA); Joe Thomas (Sussex County Emergency Operations Center); Colin Faulkner (Kent County Department of Public Safety); Dave Carpenter, Jr. -
Historic Greensburg Supercell of 4 May 2007 Anatomy of a Severe Local ‘Superstorm’
Historic Greensburg Supercell of 4 May 2007 Anatomy of a Severe Local ‘Superstorm’ Mike Umscheid National Weather Service Forecast Office – Dodge City, KS In collaboration with Leslie R. Lemon University of Oklahoma/CIMMS, NOAA/NWS Warning Decision Training Branch, Norman, OK DuPage County, IL Advanced Severe Weather Seminar March 5-6, 2010 1 © Martin Kucera A Thunderstorm Spectrum Single Cell Multi-cell Multi-cell Supercell (cluster) (line) Short-lived, Longer-lived (2-4hrs), non-tornadic supercells one or two tornadic cycles Courtesy NWS Norman Severe Local “Superstorm” 6+ hrs, 2-3 significant tornadoes (or one ultra long-lived sig tor), Many other smaller ones. Widespread destruction. 9 April 1947 Woodward, OK 2 Woodward – Udall – Greensburg Udall Woodward 10:35 pm 8:42 pm ~ ¾ to 1 mile wide 82 fatalities 1.8 miles wide 107 fatalities Photos courtesy NWS ICT, NW OK Genealogical Society, Mike Theiss Times CST 11 fatalities 1.7 miles wide 8:50 pm Greensburg 3 Integrated Warning System 4 A little preview… EF5 EF3 (+) 0237 0331 EF3 (+) EF3 0347 0437 1 supercell thunderstorm – 20 tornadoes, 4 massive tornadoes spanning 5 3 hours w/ no break, farm community obliterated, very well-documented by chasers “The Big 4” Rating: EF3 (strong) Duration: 65 min. Length: 23.5 mi Mean Width: 1.5 mi St. John Max Width: 2.2 mi Macksville Damage Area: 35.4 mi2 (A5) Rating: EF3 Damage $$: 1.5 M Duration: 24 min. Length: 17.4 mi Mean Width: 0.6 mi Max Width: 0.9 mi Trousdale Damage Area: 9.7 mi2 (A4) Hopewell Fatalities: 1 Rating: EF5 Duration: 65 min. -
National Weather Service Reference Guide
National Weather Service Reference Guide Purpose of this Document he National Weather Service (NWS) provides many products and services which can be T used by other governmental agencies, Tribal Nations, the private sector, the public and the global community. The data and services provided by the NWS are designed to fulfill us- ers’ needs and provide valuable information in the areas of weather, hydrology and climate. In addition, the NWS has numerous partnerships with private and other government entities. These partnerships help facilitate the mission of the NWS, which is to protect life and prop- erty and enhance the national economy. This document is intended to serve as a reference guide and information manual of the products and services provided by the NWS on a na- tional basis. Editor’s note: Throughout this document, the term ―county‖ will be used to represent counties, parishes, and boroughs. Similarly, ―county warning area‖ will be used to represent the area of responsibility of all of- fices. The local forecast office at Buffalo, New York, January, 1899. The local National Weather Service Office in Tallahassee, FL, present day. 2 Table of Contents Click on description to go directly to the page. 1. What is the National Weather Service?…………………….………………………. 5 Mission Statement 6 Organizational Structure 7 County Warning Areas 8 Weather Forecast Office Staff 10 River Forecast Center Staff 13 NWS Directive System 14 2. Non-Routine Products and Services (watch/warning/advisory descriptions)..…….. 15 Convective Weather 16 Tropical Weather 17 Winter Weather 18 Hydrology 19 Coastal Flood 20 Marine Weather 21 Non-Precipitation 23 Fire Weather 24 Other 25 Statements 25 Other Non-Routine Products 26 Extreme Weather Wording 27 Verification and Performance Goals 28 Impact-Based Decision Support Services 30 Requesting a Spot Fire Weather Forecast 33 Hazardous Materials Emergency Support 34 Interactive Warning Team 37 HazCollect 38 Damage Surveys 40 Storm Data 44 Information Requests 46 3. -
Bob Was a Shoo-Shoo
NEW ORLEANS NOSTALGIA Remembering New Orleans History, Culture and Traditions By Ned Hémard Bob Was a Shoo-Shoo Every boy that grew up in New Orleans (at least in my age group) that managed to get himself into the least bit of mischief knows that the local expression for a firecracker that doesn’t go off is a “shoo-shoo”. It means a dud, something that may have started off hot, but ended in a fizzle. It just didn’t live up to its expectations. It could also be used to describe other things that didn’t deliver the desired wallop, such as an over-promoted “hot date” or even a tropical storm that (fortunately) wasn’t as damaging as its forecast. Back in 1968, I thought for a moment that I was that “dud” date, but was informed by the young lady I was escorting that she had called me something entirely different. “Chou chou” (pronounced exactly like shoo-shoo) was a reduplicative French term of endearment, meaning “my little cabbage”. Being a “petite” healthy leafy vegetable was somehow a lot better than being a non-performing firecracker. At least I wasn’t the only one. In 2009 the Daily Mail reported on a “hugely embarrassing video” in which Carla Bruni called Nicolas Sarkozy my ‘chou chou’ and “caused a sensation across France”. Bruni and Sarkozy: no “shoo-shoo” here The glamourous former model turned pop singer planted a passionate kiss on the French President and then whispered “‘Bon courage, chou chou’, which means ‘Be brave, my little darling’.” The paper explained, “A ‘chou’ is a cabbage in French, though when used twice in a row becomes a term of affection between young lovers meaning ‘little darling’.” I even noticed in the recent French movie “Populaire” that the male lead called his rapid-typing secretary and love interest “chou”, which somehow became “pumpkin” in the subtitles. -
Rapid Intensification of DOI:10.1175/BAMS-D-16-0134.1 Hurricanes Is Particularly Problematic
WILL GLOBAL WARMING MAKE HURRICANE FORECASTING MORE DIFFICULT? KERRY EMANUEL As the climate continues to warm, hurricanes may intensify more rapidly just before striking land, making hurricane forecasting more difficult. ince 1971, tropical cyclones have claimed about cyclone damage, rising on average 6% yr–1 in inflation- 470,000 lives, or roughly 10,000 lives per year, and adjusted U.S. dollars between 1970 and 2015 (CRED S caused 700 billion U.S. dollars in damages globally 2016). Thus, appreciable increases in forecast skill and/ (CRED 2016). Mortality is strongly dominated by a or decreases of vulnerability, for example, through small number of extremely lethal events; for example, better preparedness, building codes, and evacuation just three storms caused more than 56% of the tropical procedures, will be required to avoid increases in cyclone–related deaths in the United States since 1900. cyclone-related casualties. Tropical cyclone mortality and injury have been Unfortunately, there has been little improvement reduced by improved forecasts and preparedness, espe- in tropical cyclone intensity forecasts over the period cially in developed countries (Arguez and Elsner 2001; from 1990 to the present (DeMaria et al. 2014). While Peduzzi et al. 2012), but through much of the world hurricane track forecasts using numerical prediction this has been offset by large changes in coastal popula- models have steadily improved, there has been only tions. For example, Peduzzi et al. (2012) estimate that slow improvement in forecasts of intensity by these the global population exposed to tropical cyclone same models. Reasons for this include stiff resolu- hazards increased by almost threefold between 1970 tion requirements for the numerical simulations of and 2010, and they project this trend to continue for tropical cyclone intensity (Rotunno et al. -
Hurricane Knowledge
Hurricane Knowledge Storm conditions can vary on the intensity, size and even the angle which the tropical cyclone approaches your area, so it is vital you understand what the forecasters and news reporters are telling you. Tropical Depressions are cyclones with winds of 38 mph. Tropical Storms vary in wind speeds from 39-73 mph while Hurricanes have winds 74 mph and greater. Typically, the upper right quadrant of the storm (the center wrapping around the eye) is the most intense portion of the storm. The greatest threats are damaging winds, storm surge and flooding. This is in part why Hurricane Katrina was so catastrophic when bringing up to 28-foot storm surges onto the Louisiana and Mississippi coastlines. A Tropical Storm Watch is when tropical storm conditions are possible in the area. A Hurricane Watch is when hurricane conditions are possible in the area. Watches are issued 48 hours in advance of the anticipated onset of tropical storm force winds. A Tropical Storm Warning is when tropical storm conditions are expected in the area. A Hurricane Warning is when hurricane conditions are expected in the area. Warnings are issued 36 hours in advance of tropical storm force winds. Here are a few more terms used when discussing hurricanes: Eye: Clear, sometimes well-defined center of the storm with calmer conditions. Eye Wall: Surrounding the eye, contains some of the most severe weather of the storm with the highest wind speed and largest precipitation. Rain Bands: Bands coming off the cyclone that produce severe weather conditions such as heavy rain, wind and tornadoes. -
Machine Learning of Atmospheric Turbulence in a Variational Multiscale Model Msc Thesis
Machine Learning of Atmospheric Turbulence in a Variational Multiscale Model MSc Thesis Martin Janssens Machine Learning of Atmospheric Turbulence in a Variational Multiscale Model MSc Thesis by Martin Janssens to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Tuesday August 27, 2019 at 10:00 AM. Student number: 4275780 Project duration: September 16, 2018 – August 28, 2019 Supervisor: Dr. S. J. Hulshoff, TU Delft Thesis committee: Dr. R. P.Dwight, TU Delft Dr. B. Chen, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: The Starry Night, Vincent van Gogh Abstract Today’s leading projections of climate change predicate on atmospheric General Circulation Models (GCMs). Since the atmosphere consists of a staggering range of scales that impact global trends, but computational constraints prevent many of these scales from being directly represented in numerical simulations, GCMs require “parameterisations” - models for the influence of unresolved processes on the resolved scales. State- of-the-art parameterisations are commonly based on combinations of phenomenological arguments and physics, and are of considerably lower fidelity than the resolved simulation. In particular, the parameter- isation of low-altitude stratocumulus clouds that result from small-scale processes in sub-tropical marine boundary layers is widely considered the largest source of uncertainty that remains in contemporary GCMs’ prediction of the temperature response to a global increase in CO2. Improvements in the capacity of machine learning algorithms and the increasing availability of high- fidelity datasets from global satellite data and local Large Eddy Simulations (LES) have identified data-driven parameterisations as a high-potential option to break the deadlock. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
2014 Annual Meeting Program Agenda (Preliminary Updated 8 October 2014)
2014 Annual Meeting Program Agenda (Preliminary updated 8 October 2014) National Weather Association 39th Annual Meeting Sheraton Hotel, Salt Lake City, UT October 18-23, 2014 Theme: "Building a 21st Century Weather Enterprise: Facilitating Research to Operations – Optimizing Communication and Response." See the main annual meeting page http://www.nwas.org/meetings/nwa2014/ for information on the meeting hotel, exhibits, sponsorships, attendee registration requirements, social media connections and more. Authors/Presenters, please inform the Annual Meeting Program Committee at [email protected] of any corrections or changes required in the listing of your presentations or abstracts as soon as possible. Instructions for uploading your presentation PowerPoint slides, extended abstracts and posters to the NWA website to be used at the meeting and eventually linked from the final agenda are shown on the "Presentation Instructions and Tips" website page. See "Upload Instructions" then send your file(s) on the Presentation and Extended Abstract Upload website page. All activities will be held in the Sheraton Salt Lake City Hotel unless otherwise noted. All attendees please check in at the NWA Registration and Information Desk as soon as possible upon arriving at the Sheraton Hotel to obtain nametags, the latest program and scheduling information and to register if not preregistered. Please note that this is a preliminary agenda and that changes will occur to the program prior to the meeting. Please check back regularly for any modifications that may impact presentation title, time, room, etc. 1 Saturday – 18 October 10:00 AM Aviation Weather Safety Seminar: Aviation Weather in the Intermountain West The NWA Aviation Meteorology Committee invites all to attend this free valuable seminar (10 AM -1PM) specifically designed for pilots who fly in the Intermountain West. -
Textremes Forms the Paths of NCM014
Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Yamada, Y. ORCID: https://orcid.org/0000-0001-6092-9944, Kodama, C., Satoh, M., Sugi, M., Roberts, M. J., Mizuta, R., Noda, A. T., Nasuno, T., Nakano, M. and Vidale, P. L. (2021) Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Progress in Earth and Planetary Science, 8 (1). ISSN 2197-4284 doi: https://doi.org/10.1186/s40645-020-00397-1 Available at http://centaur.reading.ac.uk/98236/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.1186/s40645-020-00397-1 To link to this article DOI: http://dx.doi.org/10.1186/s40645-020-00397-1 Publisher: Springer All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Yamada et al. Progress in Earth and Planetary Science (2021) 8:11 Progress in Earth and https://doi.org/10.1186/s40645-020-00397-1 Planetary Science RESEARCH ARTICLE Open Access Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations Yohei Yamada1* , Chihiro Kodama1, Masaki Satoh2, Masato Sugi3, Malcolm J. -
Tropical Topics Week 2021 NWS Florida &
5/21/2021 Tornado Recognition, Impacts & Messaging Scott Spratt; NWS Melbourne | Robert Molleda; NWS Miami 1 TC Tornadoes Tornado Recognition, Impacts & Messaging 2 1 5/21/2021 TC Tornadoes Today’s Presentation Topics • Previous Events • Climatology/Favorable Patterns • Worse Case Scenario • Threat/Impact Messaging Hurricane Irma September 10, 2017 EF-1 Tornado 1124 am | Indialantic, FL • Future Improvements 3 TC Tornadoes What is the relative threat? Which tropical cyclone hazard poses the greatest threat? A. Wind B. Storm Surge Flooding C. Heavy Rainfall Flooding D. Tornadoes E. It depends – on the particular storm/hurricane; and on where you are located 4 2 5/21/2021 The TC Tornado Hazard can be Significant A Specific Example – Tropical Storm Gordon (1994) T Barefoot Bay, FL November 16, 1994 Nearly 500 MH damaged Including 62 destroyed Tropical storm center at 1 Fatality; 40 injuries time of tornado T Tornado location 5 TC Tornadoes Threat Recognition, Impacts & Messaging The primary Tropical Cyclone (TC) tornado challenges are. 1) Predicting tornadoes outside the area where people are prepared for hurricane force winds; or prior to the damaging hurricane wind onset. 2) Predicting tornadoes from weaker systems where tornadoes may pose the greatest threat. 3) Minimizing the amount of over-warning. 4) Successfully Messaging #1-3 6 3 5/21/2021 TC Tornadoes Addressing the primary challenges • Threat Assessment • Impact Recognition • Effective Messaging 7 TC Tornado Development Diagnosing the local tornado hazard • Certain weather factors enhance the tornado potential of landfalling or paralleling systems: ✓ Strong low-level wind shear (maximized in right-front quadrant). ✓ Pockets of dry air (enhance instability; isolated cells).