Profile Profile Uses and Administration Adverse Effects And

Total Page:16

File Type:pdf, Size:1020Kb

Profile Profile Uses and Administration Adverse Effects And Etacrynic Acid/Ezetimibe 1379 unchanged and partly in the form of metabolites. It is Efortil; Etilefril; Chile: Elfortilt; Fin.: Elfortil; Fr.: Effortil; Ger.: over 10 years, may be given ezetimibe for the same indica­ extensively bound to plasma proteins. Bioflutin; Effortil; Etil; Pholdyston; Thomasin; Gr.: Effortil; tions and at the same doses as in adults (see above). ' Efortil; Ita/. : Elfortil; Jpn: Effortil; Mex.: Effortil; Quimtatil; Pol.: Effortil; Port.: Effortil; S.Afr.: Effortilt; Spain: Efortil; Swed.: Hyperlipidaemias. Ezetimibe inhibits the absorption of �:.�!?.�.��.!��-��--·········································································· Effortil; Switz. : Effortil; Thai.: Buracard; Circula; Circuman; dietary cholesterol' and, although there is a compensatory Proprietary Preparations (details are given in Volume B) Venez. : Elfortilt; Effrine; Efxine; Hyposia; Hyprosiat; Effontil. increase in cholesterol synthesis in the liver.' overall Single-ingredient Preparations. Austral.: Edecrin; Canad.: Multi-ingredient Preparations. Austria: Agilan; Amphodynt; plasma LDL-cholesterol concentrations are reduced.2 Ezeti­ Edecrin; Hung.: Uregyt; Ita!. : Reomax; Rus.: Uregyt (Ypei"HT); Effortil camp; Hypodynt; Influbenet; Ger.: Dibydergot plus; mibe may be used alone' in the management of hyperlipi­ Ukr.: Uregyt (YperHT); USA: Edecrin. Effortil plust; Switz.: Dibydergot plust; Elfortil plust. daentias (p. 1248.1) but use with lipid regulating drugs Phannacopoeial Preparations that act by reducing cholesterol synthesis may produce BP 2014: Sodium Etacrynate Injection; additive effects. In patients already taking statins, addition USP 36: Ethacrynate Sodium for Injection; Ethacrynic Add Etofibrate(riNNJ of ezetintibe results in a further reduction in LDL-choles­ terol, 4 which may increase the number of patients achiev­ ing lipid targets, or allow lower doses of statins to be used. However, the clinical relevance of this is unclear; a study' in patients with familial hypercholesterolaemia found no difference in the progression of carotid atherosclerosis (measured by intima-media thickness) in those given eze­ tintibe with simvastatin compared with those given simva­ statin alone, despite a larger reduction in LDL-cholesterol. Sintilar effects on LDL-cholesterol have been reported6 for ezetimibe with fibrates. As well as inhibiting cholesterol absorption, ezetintibe also blocks the absorption of plant sterols such as Etofibrate, a derivative of clofibrate (p. 1338.3) and carnpesterol and sitosterol, and may be effective in patients Profile nicotinic add (p. 2083.1), is a lipid regulating drug used in with sitosterolaentia,7 an inherited disorder in which the treatment of hyperlipidaentias (p. 1248,1). The usual increased absorption of plant sterols leads to premature Ethadzine, an analogue of moracizine (p. 1441.2), is oral dose is SOOmg daily. atherosclerosis. reported to be a class Ic antiarrhythntic. It is used in the 1, Sudhop T, et al. Inhibition of intestinal cholesterol absorption by treatment of ventricular and supraventricular arrhythntias ezetimibe in humans. Circulation 2002; 106: 1943-8. and has been given orally in doses starting at SO mg three �-��-��!����---········································································· 2. Knopp RH, et al. Effects of ezetimibe, a new cholesterol absorption times daily, increased if necessary to a maximum of 100mg Proprietary Preparations (details are given io Volume E) inhibitor. on plasma lipids in patients with primary hypercholester­ olemia. Bur Heart J 2003; 24: 729-41. three times daily. It has also been given intravenously. Single-ingredient Preparations. Braz. : Tricero� Ger.: Lipo-Merzt; 3. Pandor A, etal. Ezetimibe monotherapy for cholesterol lowering in 2, 722 Hong Kong: Lipo-Merz; Port,: Lipo-Merz. people: systematic review and meta-analysis of randomized controlled trials. J Intern Med 2009; 265: 568-80. 4. Pearson TA, et al. A community-basecl randomized trial of ezetimibe added to statin therapy to attain NCEP ATP m goals for LDL cholesterol in hypercholesterolemic patients: the ezetimibe add-on to statin for .effectiveness (EASE) trial. Mayo Clin Proc 2005; 80: 587-95. 5. Kastelein JJP, et al. The ENHANCE Investigators. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Eng! J Med 2008; 358: 1431-43. 6. McKenney JM, et al. Safety and efficacy of long-term co-administration of fenofibrate and ezetimibe in patients with mixed hyperlipidemia. J Am Col/ Cardiol 2006; 47: 1584-7. 7. Salen G, et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 2004; 109: 966--71. Adverse Effects and Precautions Ezethnibe is generally well tolerated. The most common adverse effects include headache, abdominal pain, and Etofylline clofibrate, a fibric add derivative (see Bezafibrate, diarrhoea; other gastrointestinal disorders, hypersensitivity Pharmacopoeias. In Eur. (see p. vii) and Jpn. p. 1323.2), is a lipid regulating drug that has been used in reactions including rash and angioedema, fatigue, chest Ph. Bur. 8: (Etilefrine Hydrochloride). A white or almost the treatment of hyperlipidaentias (p. 1248. 1). An oral dose pain, and arthralgia have also been reported. Rare adverse white, crystalline powder or colourless crystals. Freely of 250 mg two or three thnes daily has been given. effects include raised liver enzymes or hepatitis, pancreat­ soluble in water; soluble in alcohol; practically insoluble in itis, thrombocytopenia, cholelithiasis, and cholecystitis. dichloromethane. Store in airtight containers. Protect from �:.��-��t����············································································ Myalgia has occurred in patients taking ezetimibe either light. alone or when added to a statin (see Effects on Skeletal Proprietary Preparations (details are given in Volume B) Muscle, p. 1380.1). Ezetimibe should be stopped if Profile Single-ingredient Preparations. Cz. : Duolipt; Ger.: Duolipt; myopathy is suspected or creatine phosphokinase increases Hong Kong: Duolipt. significantly. Etilefrine is a direct-acting sympathontimetic (p. 1507.3) Ezetimibe should be avoided in patients with moderate with beta -agonist properties, and some alpha- and betar 1 or severe hepatic impairment. agonist actions. It is used for the treatment of hypotensive (BAN, USAN, r/NN) states (p. 1277.2). It is given orally as the hydrochloride in E:zetimibe Reviews. usual doses of 5 or 10 mg three times daily; modified-release l. Jacobson TA, et al. Safety considerations with gastrointestinally active lipid-lowering drugs: Am J Cardiol 2007; 99 (Issue 6 suppl l): 47C-55C. dosage forms may be given in doses of 2 5 mg once or twice 2. Kashani A, et al. Review of side-effect profile of combination ezetimibe daily. Etilefrine hydrochloride can also be given parent­ and statin therapy in randomized clinical trials. Am J Cardio/ 2008; 101: erally. 1606-13. Etilefrine polistirex has been used in the management of rhinitis. Carcinogenicity. Statins are not thought to cause cancer (for a discussion, see Malignant Neoplasms under Uses Parphyria. The Drug Database for Acute Porphyria, com­ and Adntinistration of Simvastatin, p. 1491.3). However, piled by the Norwegian Porphyria Centre (NAPOS) and an excess of incident cancer and fatal cancer was seen 1 in the Porphyria Centre Sweden, classifies etilefrine as prob­ patients given combination therapy with simvastatin and ably not porphyrinogenic; it may be used as a drug of first Uses and Administration ezetintibe when compared with placebo. To better exam­ choice and no precautions are needed.1 ine the association, the data were pooled with those of 1. The Drug Database for Acute Porphyria. Available at: http:/lwww. Ezetimibe is an inhibitor of intestinal sterol absorption and two large, uncompleted studies;2 the authors concluded drugs-porphyria.org (accessed 18110/11) inhibits the absorption of cholesterol and plant sterols. It is that there was no evidence that the combination caused used to reduce total cholesterol, low-density lipoprotein cancer, a conclusion that has been criticised.'·' Neither the Priapism. Priapism is a common complication of sickle-cell (LDL)-cholesterol, and apolipoprotein Bin the management FDA6 nor MHRA7 considered that a conclusion could be disease (p. 1123.2) and is often treated with intracavemo­ of hyperlipidaentias (below), and to reduce sitosterol and drawn as to the effect of ezetimibe on cancer. carnpesterol in patients with homozygous fantilial sitoster­ sal alpha agonists (see under Uses of Metarantinol, 1. Rosseb0 AB, et a!. SEAS Investigators. Intensive lipid lowering with p. 1430.2). There have also been reports of the successful olaemia. It is given orally in a usual dose of 10 mg once simvastatin and ezetimibe in aortic stenosis. N Engl J Med 2008; 359: use of etilefrine, both by intracavemosal injection for daily. 1343-56. acute treatment, 1•2 and orally for prophylaxis 1·3 For use in children, see below. 2. Peto R, etal. Analyses of cancer data from three ezetimibe trials. N Eng! J Med 2008; 359: 1357-66. 1. Virag R, et al. Preventive treatment of priapism in sickle cell disease with Reviews. 3. Drazen JM, et al. Ezetimibe and cancer-an uncertain association. N Eng! oral and self-administered intracavemous injection of etilefrine. Urology 1. Sudhop T, von Bergmann K. Cholesterol absorption inhibitors for the J Med 2008; 359: 1398-9. 1996; 47: 777-81. treatment of hypercholesterolaemia. Drugs 2002; 62: 2333-47. 4. Nissen
Recommended publications
  • FIELD Study Revealed Fenofibrate Reduced Need for Laser Treatment for Diabetic Retinopathy by Anthony C
    Supplement to Supported by an unrestricted educational grant from Abbott Laboratories March/April 2008 FIELD Study Revealed Fenofibrate Reduced Need for Laser Treatment for Diabetic Retinopathy By Anthony C. Keech, MBBS, Msc Epid, FRANZCS, FRACP; and Paul Mitchell, MBBS(Hons), MD, PhD, FRANZCO, FRACS, FRCOphth, FAFPHM This agent’s mechanism of benefit in diabetic retinopathy appears to go beyond its effects on lipid concentration or blood pressure, and this potential mechanism of action operates even when glycemic control and blood pressure levels are within goal. ABSTRACT icant relative reduction was seen of almost one-third in PURPOSE the rate of first laser application for retinopathy after The FIELD (Fenofibrate Intervention and Event an average treatment duration of 5 years with fenofi- Lowering in Diabetes) study sought to investigate brate 200 mg/day. whether long-term lipid-lowering therapy with fenofi- In this report, we detail the effects of fenofibrate brate would reduce macro- and microvascular compli- administration on ophthalmic microvascular compli- cations among patients with type 2 diabetes. We previ- cations and attempt to clarify some of the underlying ously reported that in type 2 diabetes patients with pathologies being addressed among patients undergo- adequate glycemic and blood pressure control, a signif- ing laser treatment. Jointly sponsored by The Dulaney Foundation and Retina Today MARCH/APRIL 2008 I SUPPLEMENT TO RETINA TODAY I 1 FIELD Study Revealed Fenofibrate Reduced Need for Laser Treatment for Diabetic Retinopathy Jointly sponsored by The Dulaney Foundation and Retina Today. Release date: April 2008. Expiration date: April 2009. This continuing medical education activity is supported by an unrestricted educational grant from Abbott Laboratories.
    [Show full text]
  • Joint Assessment Report Was Discussed by the Phvwp at Its Meeting in July 2007 and Finalised in September 2007
    ASSESSMENT REPORT on the benefit:risk of fibrates EXECUTIVE SUMMARY 1. BACKGROUND In the light of the established role of statins in the primary and secondary prevention of cardiovascular disease (CVD) and safety concerns arising from the use of fibrates, the CHMP Pharmacovigilance Working Party (PhVWP) agreed to undertake a benefit:risk assessment of this class of medicines. The objective was to establish the current place of fibrates in the treatment of cardiovascular and dyslipidaemic diseases, and in diabetes mellitus; also to provide recommendations regarding amendments of the Summary of Product Characteristics (SPC), as necessary. Fibrates exert their effects mainly by activating the peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Unique in this class, bezafibrate is an agonist for all three PPAR isoforms alpha, gamma, and delta. Fibrates have been shown to reduce plasma triglycerides by 30% to 50% and raise the level of high density lipoprotein cholesterol (HDL- C) by 2% to 20%. Their effect on low density lipoprotein cholesterol (LDL-C) is variable, ranging from no effect to a small decrease of the order of 10%. Today there are four licensed fibrates: bezafibrate, fenofibrate, gemfibrozil and ciprofibrate. Their currently approved indications are quite broad and in many cases still use the old Fredrickson classification for dyslipidaemias. 2. METHODOLOGY In February 2006 a List of Questions was agreed by the PhVWP for the Marketing Authorisation Holders (MAHs) of medicinal products containing one of the four currently licensed fibrates (Annex 1). Other clofibrate-containing medicinal products (e.g. etofibrate, etofyllinclofibrate) were excluded from this class review, since these are available only in a few member states via national marketing authorizations.
    [Show full text]
  • Fenofibrate Capsules Apotex Standard 67 Mg and 200 Mg
    PRODUCT MONOGRAPH PrAPO-FENO-MICRO Fenofibrate Capsules Apotex Standard 67 mg and 200 mg PrAPO-FENOFIBRATE Fenofibrate Capsules Apotex Standard 100 mg Lipid Metabolism Regulator APOTEX INC. 150 Signet Drive Toronto, Ontario DATE OF REVISION: M9L 1T9 October 7, 2014 Control No.: 169773 - 1 - PRODUCT MONOGRAPH PrAPO-FENO-MICRO Fenofibrate Capsules Apotex Standard 67 mg and 200 mg PrAPO-FENOFIBRATE Fenofibrate Capsules Apotex Standard 100 mg THERAPEUTIC CLASSIFICATION Lipid Metabolism Regulator ACTIONS AND CLINICAL PHARMACOLOGY Fenofibrate lowers elevated serum lipids by decreasing the low-density lipoprotein (LDL) fraction rich in cholesterol and the very low density lipoprotein (VLDL) fraction rich in triglycerides. In addition, fenofibrate increases the high density lipoprotein (HDL) cholesterol fraction. Fenofibrate appears to have a greater depressant effect on the VLDL than on the low density lipoproteins (LDL). Therapeutic doses of fenofibrate produce elevations of HDL cholesterol, a reduction in the content of the low density lipoproteins cholesterol, and a substantial reduction in the triglyceride content of VLDL. The mechanism of action of fenofibrate has not been definitively established. Work carried out to date suggests that fenofibrate: · enhances the liver elimination of cholesterol as bile salts; · inhibits the biosynthesis of triglycerides and enhances the catabolism of VLDL by increasing the activity of lipoprotein lipase; · has an inhibitory effect on the biosynthesis of cholesterol by modulating the activity of HMG- CoA reductase. Metabolism and Excretion After oral administration with food, fenofibrate is rapidly hydrolyzed to fenofibric acid, the active metabolite. In man it is mainly excreted through the kidney. Half-life is about 20 hours. In patients with severe renal failure, significant accumulation was observed with a large increase in half-life.
    [Show full text]
  • Methods of Chromatographic Determination of Medicines Decreasing the Level of Cholesterol
    Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 67 No. 5 pp. 455ñ461, 2010 ISSN 0001-6837 Polish Pharmaceutical Society ANALYSIS METHODS OF CHROMATOGRAPHIC DETERMINATION OF MEDICINES DECREASING THE LEVEL OF CHOLESTEROL ELØBIETA KUBLIN1, BARBARA KACZMARSKA-GRACZYK1, EWA MALANOWICZ1 and ALEKSANDER P. MAZUREK1,2 1Department of Basic and Applied Pharmacy, National Medicines Institute, 30/34 Che≥mska St., 00-725 Warszawa, Poland 2Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St., 02- 097 Warszawa, Poland Abstract: With reference to common application of HPLC to routine analytical tests on medicinal products decreasing the level of cholesterol, including three compounds from this group ñ fenofibrate, bezafibrate and etofibrate, we developed a new method for determining two other compounds ñ ciprofibrate and gemfibrozil. The developed HPLC method may be used for identification and qualitative determination of selected com- pounds ñ derivatives of aryloxyalkylcarboxylic acids as well as it may be used for simultaneous separation and determination of all compounds from the group of fibrates using one column and the same methodology. The results and statistical data indicate good sensitivity and precision. The RSD value presented is equivalent to the newly developed method of determinination of ciprofibrate and gemfibrozil in the substances and medicinal products ñ capsules and coated tablets. Keywords: hyperlipidemia, HPLC, derivatives of aryloxyalkylcarboxylic acids, bezafibrate, ciprofibrate, fibrate, gemfibrozil, etofibrate, clofibrate Hyperlipidemia (HLP) is a group of disorders The selected medicines applied in the treat- in the lipid balance of various pathogenesis, which ment of hyperlipidemia, particularily leading to a demonstrate an increase in the cholesterol concen- decrease in the level of cholesterol, have been apart tration, mostly the level of lipoprotein fractions of from statins, the derivatives of aryloxyalkyl-car- low density (LDL) and/or the concentration of boxylic acids ñ so called fibrates.
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Therapeutic Class Overview Fibric Acid Derivatives
    Therapeutic Class Overview Fibric Acid Derivatives Therapeutic Class • Overview/Summary: The fibric acid derivatives are agonists of the peroxisome proliferator activated receptor α (PPARα). Activation of PPARα increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein CIII. The resulting decrease in triglycerides (TG) produces an alteration in the size and composition of low- density lipoprotein cholesterol (LDL-C) from small, dense particles to large buoyant particles. There is also an increase in the synthesis of high-density lipoprotein cholesterol (HDL-C), as well as apoprotein AI and AII.1-10 The major action of this class of medications is to reduce TG. The fibric acid derivatives can decrease TG by 20 to 50% and increase HDL-C by 10 to 35%. They also lower LDL- C by 5 to 20%; however, in patients with hypertriglyceridemia, LDL-C may increase with the use of fibric acid derivatives.11 Several fenofibrate products are currently available, including micronized and non-micronized formulations. The different fenofibrate formulations are not equivalent on a milligram-to-milligram basis. Micronized fenofibrate is more readily absorbed than non-micronized formulations, which allows for a lower daily dose. Fenofibrate (micronized and non-micronized formulations), fenofibric acid, and gemfibrozil are available generically in at least one dosage form and/or strength.12 Fenofibrate and fenofibric acid are Food and Drug Administration (FDA)-approved for the treatment of hypercholesterolemia and mixed dyslipidemias, as well as hypertriglyceridemia. Gemfibrozil is FDA- approved for the treatment of hypertriglyceridemia and to reduce the risk of developing coronary heart disease (CHD) in select patients.13 Gemfibrozil has demonstrated a reduction in the risk of fatal and nonfatal myocardial infarction (MI) for primary prevention, as well as a reduction in CHD death and nonfatal MI and stroke for secondary prevention.
    [Show full text]
  • Peroxisome Proliferator-Activated Receptors
    PPAR Peroxisome proliferator-activated receptors PPARs (Peroxisome proliferator-activated receptors) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of the following three subtypes: PPARα, PPARγ, and PPARβ/δ. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. All PPARs heterodimerize with the retinoid X receptor (RXR) and bind to specific regions on the DNA of target genes. Activation of PPAR-α reduces triglyceride level and is involved in regulation of energy homeostasis. Activation of PPAR-γ enhances glucose metabolism, whereas activation of PPAR-β/δ enhances fatty acids metabolism. www.MedChemExpress.com 1 PPAR Inhibitors, Agonists, Antagonists, Activators & Modulators 13-Oxo-9E,11E-octadecadienoic acid 15-Deoxy-Δ-12,14-prostaglandin J2 Cat. No.: HY-N5097 (15d-PGJ2; 15-Deoxy-Δ12,14-PGJ2) Cat. No.: HY-108568 13-Oxo-9E,11E-octadecadienoic acid, an isomer of 15-Deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) is a 9-oxo-ODA, is a potent PPARα activator derived cyclopentenone prostaglandin and a metabolite of from tomato juice. 13-Oxo-9E,11E-octadecadienoic PGD2. 15-Deoxy-Δ-12,14-prostaglandin J2 is a acid decreases plasma and hepatic triglyceride in selective PPARγ (EC50 of 2 µM) and a covalent obese diabetic mice. PPARδ agonist. Purity: >98% Purity: ≥96.0% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 1 mg, 5 mg 4-O-Methyl honokiol 5-Aminosalicylic Acid Cat. No.: HY-U00450 (Mesalamine; 5-ASA; Mesalazine) Cat. No.: HY-15027 4-O-Methyl honokiol is a natural neolignan 5-Aminosalicylic acid (Mesalamine) acts as a isolated from Magnolia officinalis, acts as a specific PPARγ agonist and also inhibits PPARγ agonist, and inhibtis NF-κB activity, used p21-activated kinase 1 (PAK1) and NF-κB.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0155091A1 Huval Et Al
    US 2002O155091A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0155091A1 Huval et al. (43) Pub. Date: Oct. 24, 2002 (54) COMBINATION THERAPY FOR TREATING Publication Classification HYPERCHOLESTEROLEMIA (51) Int. Cl." ..................................................... A61K 31/74 (75) Inventors: Chad Cori Huval, Somerville, MA (US); Stephen Randall Holmes-Farley, (52) U.S. Cl. .......................................................... 424/78.29 Arlington, MA (US); John S. Petersen, Acton, MA (US); Pradeep K. Dhal, Westford, MA (US) (57) ABSTRACT Correspondence Address: HAMILTON, BROOK, SMITH & REYNOLDS, The invention relates to methods for treating hypercholes P.C. terolemia and atherosclerosis, and reducing Serum choles 530 VIRGINA ROAD terol in a mammal. The methods of the invention comprise P.O. BOX 91.33 administering to a mammal a first amount of a bile acid CONCORD, MA 01742-9133 (US) Sequestrant compound which is an unsubstituted polydial lylamine polymer and a Second amount of a cholesterol (73) Assignee: GelTex Pharmaceuticals, Inc., lowering agent. The first and Second amounts together Waltham, MA comprise a therapeutically effective amount. (21) Appl. No.: 10/025, 184 The invention further relates to pharmaceutical composi tions useful for the treatment of hypercholesterolemia and (22) Filed: Dec. 19, 2001 atherOSclerosis, and for reducing Serum cholesterol. The pharmaceutical compositions comprise a combination of a Related U.S. Application Data first amount of an unsubstituted polydiallylamine polymer compound and a Second amount of a cholesterol-lowering (63) Continuation of application No. 09/311,103, filed on agent. The first and Second amounts comprise a therapeuti May 13, 1999, now Pat. No. 6,365,186, which is a cally effective amount.
    [Show full text]
  • Section B Changed Classes/Guidelines Final Version Date of Issue
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Section B Changed Classes/Guidelines Final Version Date of issue: 19th December 2020 1 A2B ANTIULCERANTS r2020 Combinations of specific antiulcerants with other substances, such as anti- infectives against Helicobacter pylori, antispasmodics, gastroprokinetics, that are for ulcers, gastro-oesophageal reflux disease or similar conditions are classified according to the antiulcerant substance. For example, proton pump inhibitors in combination with these anti-infectives are classified in A2B2. Combinations of antiulcerants with non-steroidal anti-inflammatories where the antiulcerant is present for gastric protection are classified in M1A1. A2B1 H2 antagonists R2002 Includes, for example, cimetidine, famotidine, nizatidine, ranitidine, roxatidine. Combinations of low dose H2 antagonists with antacids are classified with antacids in A2A6. A2B2 Proton pump inhibitors r2021 Includes esomeprazole, lansoprazole, omeprazole, pantoprazole, rabeprazole. Combinations of proton pump inhibitors with gastroprokinetics for ulcers, gastro- oesophageal disease or similar conditions are classified here. Includes potassium- competitive acid blockers (P-CABs) such as revaprazan, tegoprazan, vonoprazan, etc. A2B3 Prostaglandin antiulcerants Includes misoprostol, enprostil. A2B4 Bismuth antiulcerants Includes combinations with antacids. A2B9 All other antiulcerants r2020 Includes all other products containing substances with antiulcerant action where the type of substance is not specified in classes A2B1 to
    [Show full text]
  • Trends in Lipid-Modifying Agent Use in 83 Countries
    medRxiv preprint doi: https://doi.org/10.1101/2021.01.10.21249523; this version posted January 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Trends in lipid-modifying agent use in 83 countries Authors (ORCID) Joseph E Blais (0000-0001-7895-198X)1; Yue Wei (NA)1; Kevin KW Yap (NA)2; Hassan Alwafi (NA)3; Tian-Tian Ma (0000-0003-1361-4055)3; Ruth Brauer (0000- 0001-8934-347X)3; Wallis CY Lau (0000-0003-2320-0470)3; Kenneth KC Man (0000- 0001-8645-1942)3; Chung Wah Siu (0000-0002-5570-983X)4; Kathryn C Tan (0000- 0001-9037-0416)5; Ian CK Wong (0000-0001-8242-0014)1,3; Li Wei (0000-0001- 8840-7267)3; Esther W Chan (0000-0002-7602-9470)1 Affiliations 1 Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China 2 Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China 3 Research Department of Practice and Policy, UCL School of Pharmacy, London, UK 4 Division of Cardiology, Department of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China 5 Department of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China Correspondence Esther W Chan, PhD Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]