Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Substrate Wettability Guided Oriented Self Assembly of Janus Particles
www.nature.com/scientificreports OPEN Substrate wettability guided oriented self assembly of Janus particles Meneka Banik1, Shaili Sett2, Chirodeep Bakli3, Arup Kumar Raychaudhuri2, Suman Chakraborty4* & Rabibrata Mukherjee1* Self-assembly of Janus particles with spatial inhomogeneous properties is of fundamental importance in diverse areas of sciences and has been extensively observed as a favorably functionalized fuidic interface or in a dilute solution. Interestingly, the unique and non-trivial role of surface wettability on oriented self-assembly of Janus particles has remained largely unexplored. Here, the exclusive role of substrate wettability in directing the orientation of amphiphilic metal-polymer Bifacial spherical Janus particles, obtained by topo-selective metal deposition on colloidal Polymestyere (PS) particles, is explored by drop casting a dilute dispersion of the Janus colloids. While all particles orient with their polymeric (hydrophobic) and metallic (hydrophilic) sides facing upwards on hydrophilic and hydrophobic substrates respectively, they exhibit random orientation on a neutral substrate. The substrate wettability guided orientation of the Janus particles is captured using molecular dynamic simulation, which highlights that the arrangement of water molecules and their local densities near the substrate guide the specifc orientation. Finally, it is shown that by spin coating it becomes possible to create a hexagonal close-packed array of the Janus colloids with specifc orientation on diferential wettability substrates. -
Inverse Gas Chromatographic Examination of Polymer Composites
Open Chem., 2015; 13: 893–900 Invited Paper Open Access Adam Voelkel*, Beata Strzemiecka, Kasylda Milczewska, Zuzanna Okulus Inverse Gas Chromatographic Examination of Polymer Composites DOI: 10.1515/chem-2015-0104 received December 30, 2014; accepted April 1, 2015. of composite components and/or interactions between them, and behavior during technological processes. This paper reviews is the examination of Abstract: Inverse gas chromatographic characterization various polymer-containing systems by inverse gas of resins and resin based abrasive materials, polymer- chromatography. polymer and polymer-filler systems, as well as dental restoratives is reviewed. Keywords: surface activity, polymer-polymer interactions, 2 Discussion adhesion, dental restoratives, inverse gas chromatography 2.1 Surface energy and adhesion 1 Introduction IGC is useful for surface energy determination of solid polymers and fillers. Solid surface energy of consists of Inverse gas chromatography (IGC) was introduced in 1967 dispersive ( , from van der Waals forces) and specific by Kiselev [1], developed by Smidsrød and Guillet [2], and ( , from acid-base interactions) components: is still being improved. Its popularity is due to its simplicity D and user friendliness. Only a standard gas chromatograph = + (1) is necessary [3] although more sophisticated equipment has been advised. “Inverse” relates to the aim of the experiment. for solids can be calculated according to several It is not separation as in classical GC, but examination of methods [7]; one of the most often used is that of Schultz- the stationary phase properties. Test compounds with Lavielle [8-12]: known properties are injected onto the column containing dd the material to be examined. Retention times and peak RT××ln VN =× 2 N ×× aggsl × + C (2) profiles determine parameters describing the column filling. -
Nanoparticles Improving the Wetting Ability of Biological Liquids
dynam mo ic Torrisi and Scolaro, J Thermodyn Catal 2017, 8:1 er s h & T f C DOI: 10.4172/2157-7544.1000184 o a t l a a l Journal of y n r s i u s o J ISSN: 2157-7544 Thermodynamics & Catalysis Research Article Open Access Nanoparticles Improving the Wetting Ability of Biological Liquids Torrisi L* and Scolaro C Dottorato di Ricerca in Fisica and Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata (ME), Italy Abstract The contact angle of some biological liquids was investigated on different biocompatible surfaces and nanoparticles were employed to improve their wetting ability. Biocompatible nanoparticles based on titanium, silver and gold were prepared using the technique of the pulsed laser ablation in liquids. The nanoparticles were characterized in size, shape, coalescence and concentration in solutions. Solid biocompatible substrates based on polyethylene, hydroxyapatite and titanium were employed as simulation of prosthetic surfaces. Measurements of contact angle were performed in different biological solution, including the human blood, with respect to the distilled water, without and with the use of the metallic nanoparticles at concentration of the order of 80-370 µg/ml. Keywords: Nanoparticles; Laser ablation; Contact angle; viscosity, thermal and electric conduction, vapour pressure, the PH Biocompatibility; Interfaces and other parameters [5,9]. The wetting ability of the liquid on a given surface changes introducing specific nanoparticles at the interface. This Introduction aspect is of special interest in Biology and Medicine, especially due More and more the nanotechnology is becoming important to the impact on the protein absorption and the cellular response in and promising in different fields of the science. -
Robust Omniphobic Surfaces
Robust omniphobic surfaces Anish Tutejaa,1, Wonjae Choib,1, Joseph M. Mabryc, Gareth H. McKinleyb,2, and Robert E. Cohena,2 aDepartment of Chemical Engineering, bDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139; and cAir Force Research Laboratory, Propulsion Directorate, Edwards Air Force Base, CA 93524 Edited by John M. Prausnitz, University of California, Berkeley, CA, and approved September 26, 2008 (received for review May 20, 2008) Superhydrophobic surfaces display water contact angles greater angle. The question that arises is, ‘‘Which of these states is naturally than 150° in conjunction with low contact angle hysteresis. Micro- realized by any given surface, and how can one design textures that scopic pockets of air trapped beneath the water droplets placed on promote the formation of a composite interface for a given liquid?’’ these surfaces lead to a composite solid-liquid-air interface in The answer is determined by considering the overall free energy of thermodynamic equilibrium. Previous experimental and theoreti- the system comprising the liquid droplet, the surrounding vapor, cal studies suggest that it may not be possible to form similar and the textured solid surface (13, 16, 18, 19). The critical value of fully-equilibrated, composite interfaces with drops of liquids, such the equilibrium contact angle (c) beyond which the composite as alkanes or alcohols, that possess significantly lower surface interface leads to a lower overall free energy, in comparison to the ؍ ␥ tension than water ( lv 72.1 mN/m). In this work we develop fully wetted interface, can be determined by equating the Wenzel surfaces possessing re-entrant texture that can support strongly and Cassie-Baxter relations. -
Inverse Gas Chromatography a Tool to Follow
Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects María Graciela Cares Pacheco, Rachel Calvet, G. Vaca-Medina, A. Rouilly, Fabienne Espitalier To cite this version: María Graciela Cares Pacheco, Rachel Calvet, G. Vaca-Medina, A. Rouilly, Fabienne Espitalier. In- verse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects. International Journal of Pharmaceutics, Elsevier, 2015, 494 (1), pp.113-126. 10.1016/j.ijpharm.2015.07.078. hal-01611017 HAL Id: hal-01611017 https://hal.archives-ouvertes.fr/hal-01611017 Submitted on 5 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects a, a b,c b,c a M.G. Cares-Pacheco *, R. Calvet , G. Vaca-Medina , A. Rouilly , F. Espitalier a Université de Toulouse; Mines Albi, UMR CNRS 5302, Centre RAPSODEE; Campus Jarlard, F-81013 Albi cedex 09, France b Université de Toulouse; INP-ENSIACET, LCA, 310130 Toulouse, France c INRA; UMR 1010 CAI, 310130 Toulouse, France A B S T R A C T Powders are complex systems and so pharmaceutical solids are not the exception. -
Formulation, Stability and Physicochemical Properties of Pickering Emulsions: an Overview
Applied Physics Research; Vol. 11, No. 1; 2019 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Formulation, Stability and Physicochemical Properties of Pickering Emulsions: An Overview Papa Mady Sy1, Sidy Mouhamed Dieng1 & Mounibé Diarra1 1 Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, UCAD, Dakar, Senegal Correspondence: Papa Mady Sy, Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, UCAD, Dakar, Senegal. E-mail: [email protected]; [email protected] Received: October 23, 2018 Accepted: November 22, 2018 Online Published: January 29, 2019 doi:10.5539/apr.v11n1p41 URL: http://dx.doi.org/10.5539/apr.v11n1p41 Abstract This review work focuses mainly on the formulation, characterization, physicochemical properties and parameters of stability of emulsions stabilized by solid particles (Pickering emulsions). This concept of emulsions stabilized by particles strong knows a renewed interest in our days saw the benefits they present: good stability, protection of the environment, safety of users, types of particles etc. The adsorption of the solid particles at the oil-water interface is almost irreversible and strong, leading to the formation of a dense film, creating a barrier around the droplets and thus making the droplets very resistant to coalescence. Recently, the possibilities of application of emulsions stabilized by particles are considered in the pharmaceutical industry. This type of formulation may be a potential system of encapsulation of the active ingredients, allowing controlled and targeted release of the active ingredient from the internal phase. Keywords: Pickering-emulsions-stability-Physico-chemical properties 1. Introduction Pickering emulsions are dispersions of two thermodynamically unstable, immiscible liquids stabilized by solid particles. -
Adhesion Force Studies of Janus Nanoparticles
8544 Langmuir 2007, 23, 8544-8548 Adhesion Force Studies of Janus Nanoparticles Li-Ping Xu, Sulolit Pradhan, and Shaowei Chen* Department of Chemistry and Biochemistry, UniVersity of California, 1156 High Street, Santa Cruz, California 95064 ReceiVed March 15, 2007. In Final Form: May 16, 2007 Janus nanoparticles represent a unique nanoscale analogue to the conventional surfactant molecules, exhibiting hydrophobic characters on one side and hydrophilic characters on the other. Yet, direct visualization of the asymmetric surface structures of the particles remains a challenge. In this paper, we used a simple technique based on AFM adhesion force measurements to examine the two distinctly different hemispheres of the Janus particles at the molecular level. Experimentally, the Janus nanoparticles were prepared by ligand exchange reactions at the air-water interface. The particles were then immobilized onto a substrate surface with the particle orientation controlled by the chemical functionalization of the substrate surface, and an AFM adhesion force was employed to measure the interactions between the tip of a bare silicon probe and the Janus nanoparticles. It was found that when the hydrophilic side of the particles was exposed, the adhesion force was substantially greater than that with the hydrophobic side exposed, as the silicon probes typically exhibit hydrophilic properties. These studies provide further confirmation of the amphiphilic nature of the Janus nanoparticles. Introduction both electrical and color anisotropy, they may be used in electronic paper.19,20 Janus particles coated with different chemical groups Nanoparticles have long been fascinating objects due to their can also be derivatized into bifunctional carriers useful for potential applications as novel building blocks for the fabrication catalysis, sensing, drug delivery, etc. -
Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces
Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces Afshin Asadzadeh Shahir B.Sc. Applied Chemistry, M.Sc. Physical Chemistry A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemical Engineering Abstract Traditional approaches to studying fluid – liquid interfaces include the macroscopic measuring of interfacial properties such as surface tension and matching the collected data against adsorption models. This method is capable of producing valuable data about the thermodynamics of adsorption and has been widely used by the community to extract information about the adsorption of thousands of different surface-active molecules. Nonetheless, this methodology cannot produce any molecular-level information about the microscopic structure of adsorption layers and interfaces. As a result, the molecular origins of many interfacial phenomena remained unknown until the advent of surface-sensitive techniques such as computer simulation and non-linear spectroscopy. The new insights provided by these methods have challenged the traditional views about the origins of some interfacial phenomena and promise modification of classical theories which were developed to explain these phenomena. In general, this thesis aims to study the interfacial structure and adsorption of ionic surfactants, some surface-active alcohols as model nonionic surfactants including, n-pentanol, methyl isobutyl carbinol (MIBC) and n-hexanol and inorganic salts including LiCl, NaCl and CsCl at both microscopic and macroscopic levels. The employed methodology involves a combination of traditional adsorption modelling with some macroscopic measurements and sum frequency generation (SFG) spectroscopy, which is capable of distinguishing between bulk and interfacial molecules. -
Large Amphiphilic Janus Microgels As Droplet Stabilizers Bobby Haney, Jörg G
Subscriber access provided by Harvard Library Surfaces, Interfaces, and Applications Absorbent-Adsorbates: Large Amphiphilic Janus Microgels as Droplet Stabilizers Bobby Haney, Jörg G. Werner, David A. Weitz, and Subramanian Ramakrishnan ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.0c11408 • Publication Date (Web): 29 Jun 2020 Downloaded from pubs.acs.org on July 10, 2020 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. is published by the American Chemical Society. -
Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles Through Colloidal Assembly with Unexpected High Selectivity
polymers Article Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches Daniel Mann 1,2, Stefanie Voogt 1,2,3, Helmut Keul 1,2, Martin Möller 1,2, Marcel Verheijen 4,5 and Pascal Buskens 1,2,3,6,* 1 DWI—Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany; [email protected] (D.M.); [email protected] (S.V.); [email protected] (H.K.); [email protected] (M.M.) 2 Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany 3 Zuyd University of Applied Sciences, Nieuw Eyckholt 300, Postbus 550, 6400 AN Heerlen, The Netherlands 4 Philips Innovation Labs, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands; [email protected] 5 Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands 6 The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP Eindhoven, The Netherlands * Correspondence: [email protected]; Tel.: +31-88-866-2990 Received: 1 September 2017; Accepted: 26 September 2017; Published: 28 September 2017 Abstract: Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. -
Contact Angle Vs Dyne
A practical means to measure surface treatment levels of PE Film using PGX+, a new portable contact angle instrument. Contact angle measurements The PGX + uses a liquid droplet (e.g. water) applied to the surface of the substrate in order to determine properties specific to the surface layer of the material. This is commonly referred to as a contact angle measurement using “the sessile drop method”. The contact angle is measured as the inward angle between the base and the tangent at the point of contact between the liquid and the surface. This value corresponds to the surface energy level in the equilibrium system formed between the liquid and the solid on the condition the surface is smooth, non-porous, non-sorptive, and homogeneous. Furthermore the liquid must not react chemically with the substrate. The relationship between a static contact angle and the surface energy forces was defined by Young [1] from the interfacial tensions: γSV = γSL + γLV cos θ; γ LV where γSV = solid-vapour interaction γSL =solid-liquid interaction γLV = liquid-vapour interaction θ ”Wetting” is obtained if contact angle is ≤ 90° γ SV γ SL Static contact angles A static contact angle occurs where the water droplet reaches an A “flying saucer”? “equilibrium” condition and the dimensions of the liquid droplet would not change over time. This situation will normally occur for a non- θ < 9 absorbent substrate (e.g. liquid container board, release papers). This 0° condition would also occur when a water droplet is applied to a copy paper because of its “hydrophobicity” (water repellence). -
Janus Particles for (Bio)Sensing
View metadata, citation and similarbrought COREpapers to youat core.ac.ukby provided by EPrints Complutense Dedicated to our dear friend Dr. Joseph Wang for his 70th birthday, a scientist unrepeatable and still better person Janus particles for (bio)sensing P. Yánez-Sedeñoa, S. Campuzanoa,*, J.M. Pingarróna,b,* a Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Avda. Complutense s/n, E-28040 Madrid, Spain. Fax: b IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain E-mails: [email protected]; [email protected]; [email protected]. Tel. 34913944315, fax 34 913944329. * to whom correspondence should be addressed 1 Abstract This review article sheds useful insight in the use of Janus nanoparticles for (bio)sensing in connection with optical and electrochemical transduction. After a brief introduction of the main properties, types and fabrication strategies of Janus nanoparticles, selected applications for their use in electrochemical and optical biosensing are critically discussed. Highlighted examples illustrate the great versatility and interesting possibilities offered by these smart multifunctional nanoparticles for (bio)sensing of relevant analytes operating both in static and dynamic modes. Progress made so far demonstrate their suitability for designing single- or multiplexed (bio)sensing strategies for target analytes of different nature (organic and inorganic compounds, proteins, cells and oligomers) with relevance in clinical (H2O2, glucose, cholesterol, CEA, human IgG, propranolol, bacterial and tumor cells) and environmental (lead and organophosphorous nerve agents) fields. Key future challenges and envisioned opportunities of the use of Janus nanoparticles in the (bio)sensing field are also discussed. Keywords: Janus particles; Janus micromotors; biosensing; optical; electrochemical.