(12) Patent Application Publication (10) Pub. No.: US 2017/0037234 A1 PRUDHOMME Et Al
Total Page:16
File Type:pdf, Size:1020Kb
US 20170037234A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0037234 A1 PRUDHOMME et al. (43) Pub. Date: Feb. 9, 2017 (54) POLYMERNANOPARTICLES Publication Classification (71) Applicant: THE TRUSTEES OF PRINCETON (51) Int. Cl. UNIVERSITY, Princeton, NJ (US) COSL 25/06 (2006.01) A6II 47/32 (2006.01) (72) Inventors: Robert K. PRUDHOMME, BOI 3L/26 (2006.01) Lawrenceville, NJ (US); Rodney D. COSL 4700 (2006.01) PRIESTLEY, Princeton, NJ (US); Rui BOI 3L/06 (2006.01) LIU, Princeton, NJ (US); Chris SOSA, BOI 3L/28 (2006.01) Princeton, NJ (US) A6IR 9/16 (2006.01) (73) Assignee: THE TRUSTEES OF PRINCETON AOIN 25/10 (2006.01) UNIVERSITY, Princeton, NJ (US) (52) U.S. Cl. (21) Appl. No.: 15/121,715 CPC .................. C08L 25/06 (2013.01); A61K 9/16 (2013.01); A61K 47/32 (2013.01); A0IN 25/10 (22) PCT Fed: Feb. 25, 2015 (2013.01); C08L 47/00 (2013.01); B01J 31/06 (2013.01); B01J 3 I/28 (2013.01); B01J 31/26 (86) PCT No.: PCT/US 15/17590 (2013.01); B01.J 223 1/641 (2013.01) S 371 (c)(1), (2) Date: Aug. 25, 2016 Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 61/944,784, filed on Feb. 26, 2014, provisional application No. 62/042,515, Polymer nanoparticles, including Janus nanoparticles, and filed on Aug. 27, 2014. methods of making them are described. Patent Application Publication Feb. 9, 2017. Sheet 1 of 5 US 2017/0037234 A1 5 Patent Application Publication Feb. 9, 2017. Sheet 2 of 5 US 2017/0037234 A1 s -- PSIPRATIO (st8) FG. 2A išS ji-CE assX, SE iii. iT if PSPRATIO (w: F.G. 2B - SCANGEORY SS 3 & it Ji-ACE PAR CE & & ANSARC w 3. 2. 5 s SiRATIO (;6 FG. 2C Patent Application Publication Feb. 9, 2017. Sheet 3 of 5 US 2017/0037234 A1 650 6OO 550 5OO 450 4OO 350 300 25 O 2OO 150 1 OO 50 O,O 0.2 0.4 O6 0.8 1.0 Polymer Feed Concentration (mg/ml) FIG. 3 Patent Application Publication Feb. 9, 2017. Sheet 4 of 5 US 2017/0037234 A1 Patent Application Publication Feb. 9, 2017. Sheet 5 of 5 US 2017/0037234 A1 s s & 3. s E. Se stSE. : X. ... se iSNN: ALSNSLN . US 2017/0037234 A1 Feb. 9, 2017 POLYMERNANOPARTICLES Electrophoresis of Metallodielectric Particles, Phys. Rev. Lett. 2008, 100, 058302) motion in alternating fields 0001. This invention was made with government support (Squires, T. M. et al., Breaking symmetries in induced under Grant No. DMR-0819860 awarded by the National charge electro-osmosis and electrophoresis, J. Fluid Mech. Science Foundation. The government has certain rights in 2006, 560, 65-101), migrate to the interface between two the invention. immiscible fluids in order to decrease the surface tension of macroscopic emulsions (Yoon, J. et al., Amphiphilic colloi FIELD OF THE INVENTION dal Surfactants based on electrohydrodynamic co-jetting, 0002 The present invention relates to polymer nanopar ACSA.ppl. Mater. Interfaces 2013, 5, 11281-7), and uniquely ticles and processes of making them. interact with cellular interfaces in order to facilitate the absorption of imaging or therapeutic agents (Gao, Y. et al., BACKGROUND OF THE INVENTION How half-coated janus particles enter cells, J. Am. Chem. 0003. In Pierre Gilles de Gennes's 1991 Nobel Laureate Soc. 2013, 135, 19091-4). speech titled “Soft Matter he introduced the concept of 0007. The interest in multi-faced nanocolloid applica Janus particles, which are anisotropically structured par tions has outstripped the ability to produce commercial-scale ticles containing two distinct regions of material or func materials, hindering the development of new technologies tionality. Their development can be considered in the con (Samuel, A. Z. et al., Self-Adapting Amphiphilic Hyper text of the scientific and technological development of other branched Polymers, Macromolecules 2012, 45, 2348-2358: chemically anisotopically structured materials, such as Sur Jang, S. G. et al., Striped, ellipsoidal particles by controlled factants and block copolymers. The ability to synthesize assembly of diblock copolymers, J. Am. Chem. Soc. 2013, Surfactants at Scale and in cost effective ways has led to the 135, 6649-57; Erhardt, R. et al., Amphiphilic Janus micelles current surfactant market. The ability to synthesize block with polystyrene and poly(methacrylic acid) hemispheres, J. copolymers at Scale and in cost effective ways has led to the Am. Chem. Soc. 2003, 125, 3260-3267: Roh, K. et al., current market for thermoplastic elastomers based on block Biphasic Janus particles with nanoscale anisotropy, Nat. copolymers. Mater: 2005, 4,759-763; Yamashita, N. et al., Preparation of 0004 Janus colloids can be assembled from a broad hemispherical particles by cleavage of micrometer-sized, variety of building blocks ranging from metals to polymers spherical poly(methyl methacrylate)/polystyrene composite (Yoon, J. et al., Amphiphilic colloidal surfactants based on particle with Janus structure: effect of molecular weight, electrohydrodynamic co-jetting, ACS Appl. Mater. Inter Colloid Polym. Sci. 2013, 292, 733–738). faces, 2013, 5, 11281-7: Glaser, N. et al., Janus particles at 0008. The scalability of processes for forming and com liquid-liquid interfaces, Langmuir 2006, 22, 5227-9). The prehensive control over particle morphology of Janus par breadth of material properties exhibited by polymers as well ticles is a challenge (Chang, E. P. et al., Membrane Emul as their ability to phase separate can be useful for the sification and Solvent Pervaporation Processes for the generation of Janus colloids. Continuous Synthesis of Functional Magnetic and Janus 0005 Colloids possessing patterned or structured surface Nanobeads, Langmuir 2012, 28,9748-9758: Wang, Y. et al., domains of differing chemical composition can serve as Colloids with valence and specific directional bonding, nanoscale building blocks for the design of materials with Nature 2012, 491, 51-5; Walther, A. et al., Janus discs, J. Am. molecular scale features (Walther, A. et al., Janus particles. Chem. Soc., 2007, 129, 6187-98). Soft Matter 2008, 4, 663-668; Walther, A. et al. Janus 0009 Metal nanoparticles (Burda, C. et al., Chem. Rev. Particles: Synthesis, Self-Assembly, Physical Properties, 2005, 105, 1025) are typically unstable and tend to sinter and Applications, Chem. Rev. 2013, 113, 5194-5261; into larger species. A Suitable carrier is needed to prevent the Samuel, A. Z. et al., Self-Adapting Amphiphilic Hyper aggregation of metal nanoparticles (Astruc. D. et al., Angew branched Polymers, Macromolecules 2012, 45, 2348-2358). Chem. Int. Ed. 2005, 44, 7852. Na, H. B. et al., Adv. Mater. The functionality of Such particles can depend on the spatial 2009, 21, 2133). Polymeric matrices (Scott, R. W. et al., J. topology and molecular properties of Surface domains Am. Chem. Soc. 2004, 126, 15583; Anderson, R. M. et al., (Walther, A. et al., Janus particles, Soft Matter 2008, 4. ACS Nano 2013, 7, 9345.; Peng, X. et al., Chem. Soc. Rev. 663-668; Walther, A. et al., Janus Particles: Synthesis, 2008, 37, 1619), latex particles (Sun, Q. et al., Langmuir Self-Assembly, Physical Properties, and Applications, 2005, 21, 5812; Mohammed, H. S. et al., Macromol. Rapid Chem. Rev. 2013, 113, 5194-5261). Commun. 2006, 27, 1774; Wong, J. E. et al., J. Colloid 0006 Janus nanocolloids can assemble into higher-order Interface Sci. 2008, 324, 47: Ganesan, V. et al. Soft Matter SuperStructures when induced to by various environmental 2010, 6, 4010; Liu, R. et al., ACS Appl. Mater. Interfaces stimuli (Walther, A. et al., Janus particles, Soft Matter 2008, 2013, 5,9167) have been studied for the immobilization of 4, 663-668; Chen, Q. et al., Directed self-assembly of a metal nanoparticles. (Mel, Y. et al. Chem. Mater: 2007, 19, colloidal kagome lattice, Nature 2011, 469, 381-384). They 1062; Schrinner, M. et al., Adv. Mater, 2008, 20, 1928: Lu, can, for example, organize under magnetic (Smoukov, S. K. Y. et al., Macromol Rapid Comm. 2009, 30, 806. Wunder, et al., Reconfigurable responsive structures assembled from S. et al., J. Phys. Chem. C 2010, 114, 8814; Shenhar, R. et magnetic Janus particles, Soft Matter 2009, 5, 1285-1292) or al., Adv. Mater. 2005, 17, 657: Grzelczak, M. et al., ACS electric fields (Gangwal, S. et al., Dielectrophoretic Assem Nano 2010, 4, 3591). Nanoparticles, such as magnetic bly of Metallodielectric Janus Particles in AC Electric nanoparticles (Krack, M. et al., J. Am. Chem. Soc. 2008, 130, Fields, Langmuir 2008, 24, 133 12-13320) to form patterned 7315) and quantum dots (Diaz A. et al., Am. Chem. Soc. chains on Solid Substrates, undergo complex translational 2013, 135, 3208) can be encapsulated in various polymer (Gangwal, S. et al., Induced-Charge Electrophoresis of assemblies to form multifunctional materials (Mai, Y. et al., Metallodielectric Particles, Phys. Rev. Lett. 2008, 100, J. Am. Chem. Soc. 2010, 132, 10078.; Jang, S. G. et al., J. 0583.02) and rotational (Gangwal, S. et al Induced-Charge Am. Chem. Soc. 135, 6649; Bae, J. et al., Adv. Mater, 2012, US 2017/0037234 A1 Feb. 9, 2017 24, 2735; Chen, H. et al., Chem. Phys. Chem. 2008, 9,388: can be a Sulfonated alkyl Surfactant, sodium dodecyl sulfate, Li, W. K. et al., Angew. Chem., Int. Ed. 2011, 50, 5865: an ethoxylated Sulfonate Surfactant, a cationic Surfactant, an Kang, Y. et al., Angew. Chem., Int. Ed. 2005, 44, 409: Kim, amine oxide Surfactant, a Zwitterionic Surfactant, an ampho B. S. et al., Nano Lett. 2005, 5, 1987; Hickey, R. J. et al., J. teric Surfactant, ethylene oxide Surfactant based on an alkyl Am. Chem. Soc. 2011, 133, 1517: Luo, Q. et al., ACS Macro ether, ethylene oxide Surfactant based on a nonylphenol, a Lett. 2013, 2, 107).