Mystery Maria

Total Page:16

File Type:pdf, Size:1020Kb

Mystery Maria exploring the moon by charles a. wood Mystery Maria nearly all the Moon’s big maria (“seas”) are circular because they fi ll ancient impact basins. But Mare Frigoris The Lunar 100 isn’t. Frigoris (L26 in the Lunar 100) is a 1,500-kilometer- L Feature name Significance long (930-mile), 200-km-wide arc of lava that spans from 10 Mare Crisium Mare contained in large circular basin Oceanus Procellarum in the west to the craters Atlas and Hercules in the east. 26 Mare Frigoris Arcuate mare of uncertain origin One characteristic of Mare Frigoris that See Sky & Telescope: April 2004, page 113, or point your Web browser to SkyTonight A few of the .com/lunar100. may help explain its origin is the fact Moon’s biggest that it’s mostly concentric with the Im- features are brium impact basin. But Frigoris isn’t the “basins” typically have two to six concentric rings and are only mare hugging Imbrium’s rim. Mare more accurately referred to as multiring impact basins. also its most Vaporum, Sinus Medii, Sinus Aestuum, This aspect is best illustrated by the far-side basin Orientale puzzling. and Mare Insularum help defi ne a moat — the youngest and least modifi ed lunar basin. of lava that encircles much of Imbrium. Although six rings have been mapped around Orientale, And Imbrium isn’t the only basin surrounded by maria. only three are clearly visible. The most dramatic is the If you look closely outside the main rim of Mare Crisium 930-km-wide Cordillera Mountains ring, which is partially (L10), you’ll notice that it’s surrounded by a similar, but visible when the western edge of the Moon is tilted to- less conspicuous, lava arc. Arrayed around Crisium are ward us by libration. Inside the Cordillera range are three Lacus Bonitatis, Mare Anguis, and Mare Undarum. These smaller, hilly rings. Some lunar scientists speculate that lesser mare regions are low zones, and the key to under- two indistinct rings also exist outside the Cordillera rim. standing them is realizing that, unlike typical impact cra- In the low zones between Orientale’s rings are the ters, large basins have more than one rim. For reasons that puddles of mare lava named Lacus Autumni and Lacus we don’t fully understand, the highly energetic impacts Veris. The lavas forming these “lakes” apparently rose up that produce depressions larger than about 300 km across through fractures associated with the rings and ponded in create a series of concentric rings inside the main basin the spaces between them. rim and fault scarps outside it. Indeed, the features we call Orientale’s nearly pristine nature provides a model of basin topography that helps explain some other- Mare Frigoris appears concentric 26 wise mysterious features found at older basins. with the northern shore of Mare For example, the Imbrium basin’s equivalent of Imbrium — a relationship that may the Cordillera rim is the Apennine range. The be more than coincidental. MARE FRIGORIS Apennine rim has a diameter of 1,160 km, and N When to View Them 26 Mare Crisium: MARE IMBRIUM March 5th and 22nd; April 4th and 21st. 10 Mare Frigoris: March 1st to W E 8th, March 30th to April 7th, and MARE April 28th to SINUS MARE INSULARUM May 6th. AESTUUM VAPORUM Universal dates indicate when these features are favorably illuminated. SINUS S MEDII RÜKL ANTONÍN GARY SERONIK ©2007 New Track Media LLC. All rights reserved. Sky & Telescope April 2007 63 pexploring the moon beyond that is a 1,700-km-diameter rim 3,200-km-wide circular basin. This puta- that’s defi ned partially by the northern tive basin has been mapped with several shore of Mare Frigoris. Perhaps the lava in boundaries and has been known by differ- Frigoris fi lls a broad depression between ent names: the Procellarum basin and the two basin rims, just as in Lacus Veris and Gargantuan basin. Lacus Autumni outside Orientale. The According to one interpretation, the only problem with this explanation is that giant basin’s main rim involves the west- except for the edge of Frigoris and a few ern shore of Procellarum and the north- scattered peaks, there’s very little topo- ern edge of Frigoris but is poorly defi ned graphic evidence for a Frigoris rim! along its southern margins. In another At the Crisium impact basin, the best- interpretation, the northern edge of Frigo- preserved outer ring passes through the ris is the boundary of an inner ring of a crater Geminus and traces its way along basin that includes nearly two-thirds of the southern edge of the Taurus Moun- the lunar near side. The existence of a gi- tains. The space between the 1,075-km- gantic Procellarum basin is controversial, diameter Geminus ring and Crisium’s but if it’s real in any of its guises, Frigoris mountainous 500-km-diameter main ring is probably somehow related to it. is relatively low and fl at. Within this zone Regardless of which explanation is cor- we fi nd the small mare patches of Bonita- rect, Frigoris seems tied to impact basins tis, Anguis, and Undarum. after all — just like most other mare de- Can rings and ponds really explain posits on the Moon. † Mare Frigoris? Perhaps. Nearby Oceanus Charles A. Wood Procellarum is another arcuate mare. is the author of The Mod- It stretches about 2,000 km along the ern Moon: A Personal View and the Lunar Moon’s western limb. Procellarum was 100 Card (both available from Sky Publishing). long considered a different class of mare His Lunar Photo of the Day website (www.lpod from the circular maria. But perhaps .org) recently passed the 1,000-day mark, and he Procellarum is the western third of a still fi nds new lunar delights to write about. 10 LACUS MARE BONITATIS ANGUIS MARE CRISIUM MARE UNDARUM GARY SERONIK 64 April 2007 Sky & Telescope ©2007 New Track Media LLC. All rights reserved..
Recommended publications
  • 88 PAJ 116 Anne Carson Reading Text in STACKS © Michael Hart, 2008
    Anne Carson reading text in STACKS © Michael Hart, 2008. Courtesy Jonah Bokaer Choreography. 88 PAJ 116 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/PAJJ_a_00369 by guest on 01 October 2021 Stacks Anne Carson STACK OF THE SEAS OF THE MOON IN ALPHABETICAL ORDER Mare Aliorum Sea of Others Mare Ambulationis Sea of Walking Mare Anguis Snake Sea Mare Australe Sea to the South Mare Crisium Sea of Crises Mare Dormiendi Nuditer Sea of Sleeping Naked Mare Frigoris Sea of Cold Mare Humboldtianum Humboldt’s Sea Mare Humorum Sea of Moistures Mare Imbrium Sea of Rains Mare Lunae Quaestionum Sea of the Problems of the Moon Mare Marginis Border Sea Mare Moscoviense Moscow Sea Mare Nectaris Sea of Nectar Mare Nocte Ambulationis Sea of Walking at Night Mare Nubium Sea of Clouds Mare Orientale Sea to the East Mare Personarum Sea of Masks Mare Phoenici Phoenician Sea Mare Phoenicopterorum Sea of Flamingos Mare Pudoris Sea of Shame Mare Relictum Sea of Detroit Mare Ridens Laughing Sea Mare Smythii Sea of Smyth Mare Spumans Foaming Sea Mare Tempestivitatis Sea of What Frank O’Hara Calls “Cantankerous Filaments of a Larger Faintheartedness Like Loving Summer” Mare Vituperationis Sea of Blaming © 2017 Anne Carson PAJ 116 (2017), pp. 89–108. 89 doi:10.1162/PAJJ _a_00369 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/PAJJ_a_00369 by guest on 01 October 2021 THUNDERSTORM STACK A bird flashed by as if mistaken then it starts. We do not think speed of life. We do not think why hate Jezebel? We think who’s that throwing trees against the house? Jezebel was a Phoenician.
    [Show full text]
  • Geologic Structure of Shallow Maria
    NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) ­ 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir­ cular basins.
    [Show full text]
  • TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
    The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Radar Remote Sensing of Pyroclastic Deposits in the Southern Mare Serenitatis and Mare Vaporum Regions of the Moon Lynn M
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, E11004, doi:10.1029/2009JE003406, 2009 Click Here for Full Article Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon Lynn M. Carter,1 Bruce A. Campbell,1 B. Ray Hawke,2 Donald B. Campbell,3 and Michael C. Nolan4 Received 21 April 2009; revised 12 July 2009; accepted 3 August 2009; published 5 November 2009. [1] We use polarimetric radar observations to study the distribution, depth, and embedded rock abundance of nearside lunar pyroclastic deposits. Radar images were obtained for Mare Vaporum and the southern half of Mare Serenitatis; the imaged areas contain the large Rima Bode, Mare Vaporum, Sulpicius Gallus, and Taurus-Littrow pyroclastic deposits. Potential pyroclastic deposits at Rima Hyginus crater, the Tacquet Formation, and a dome in Mare Vaporum are also included. Data were acquired at S band (12.6 cm wavelength) using Arecibo Observatory and the Green Bank Telescope in a bistatic configuration. The S band images have resolutions between 20 and 100 m/pixel. The pyroclastic deposits appear dark to the radar and have low circular polarization ratios at S band wavelengths because they are smooth, easily penetrable by radar waves, and generally contain few embedded blocks. Changes in circular polarization ratio (CPR) across some of the pyroclastic deposits show areas with increased rock abundance as well as deposits that are shallower. Radar backscatter and CPR maps are used to identify fine-grained mantling deposits in cases where optical and near-infrared data are ambiguous about the presence of pyroclastics.
    [Show full text]
  • Table of Exposures
    Table of Exposures Dole UT Focal Emulsion Exposure Moon's age Plate Nos. ralio sec. days 08.11.65 2132· f/29 Kodak 0.250 Plole 0.4 15.3 7e/2 08.01.66 2228 f/24 Kodak 0.250 Plate 0.31 17.0 3b, 15e 31.01.66 1947 1/24 Kodak 0.250 Plale 0.3 10.1 5b 02.02.66 1944 f/24 Kodak 0.250 Plote 0.25 12.1 7b, 8b 06.02.66 2326 1/24 Kodak 0.250 Plole 0.2 16.3 14c,16b 05.03.66 2259 1/41 IIford Zenith Plole 0.1 13 .5 lOe/l 27.04.66 2152 1/24 lIford G.30 Plate 0.5 6.9 150 28.04.66 2046 f/30 lIford G.30 Pia Ie 0.8 7.9 10,130 23.05.66 2033 f/24 Kodak 0.250 Plole 0.7 3.4 15e/2 23.05,66 2034 f/24 Kodak 0.250 Plate 0.7 3.4 3e/2,4b 23.05.66 2036 1/24 Kodak 0.250 Plate 0.7 3.4 16e 28.05.66 2122 1/30 IIford G.30 Plole 0.8 8.4 140 29.05.66 2103 1/30 IIford G.30 Plate 0.8 9.4 2e 23.06.66 2109 f/24 lIford G.30 Pia Ie 1.0 5.0 160 06.08.66 0211 f/30 Illord G.30 Pia Ie 0.7 18.9 2b 06.08.66 0215 1/30 IIford G.30 Plale 0.7 18.9 lb, 13b 09.08.66 0315 1/30 IIlord G.30 Plate 1.1 23.8 50,60 09.08.66 03 17 1/30 Ilford G.30 Plate 1.1 23.8 90, 91/2, 11 b, 12e/l 06.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • Location #1: Peary/Whipple Crater
    Location, Location, Location A Lunar Investment Strategy Hoyt Davidson Near Earth LLC June 2017 ISU's International Institute of Space Commerce Lunar Economic Action Plan (LEAP) Space and Questions from 1960 Still Relevant Today Economic Development • How can we utilize our dynamic system of competitive private enterprise in space, as on earth, to make newly discovered resources useful to man? • How can private enterprise and private capital make their maximum contribution? Philosophy and Policy The ultimate goal is not to impress others, or merely to explore our planetary system, but to use accessible space for the benefit of humankind. It is a goal that is not confined to a decade or a century. Nor is it confined to a single nearby destination, or to a fleeting dash to plant a flag. The idea is to begin preparing now for a future in which the material trapped in the Sun's vicinity is available for incorporation into our way of life. Dr. John Marburger, Head of the Office of Science and Technology Policy 2006 3 The Investment Premise • Just as on Earth, lunar real estate “value” is driven by location, location, location Rank Location Why Valuable 1 Peary Crater Best 1st industrial base and settlement 2 Sinus Medii Good cargo port & space elevator site 3 Largest skylights / lava tubes Best large scale settlements 4 Tsiolkovskiy crater, dark side Prime radio astronomy site 5 High helium-3 concentrations Potential high value mining 6 Lipsky Crater Space elevator site for Earth-Moon L2 7 Aristillus High Thorium concentrations • Lunar real
    [Show full text]
  • SMART-1 Lunar Highlights Bernard H
    SMART-1 lunar highlights Bernard H. Foing & SMART-1 Project & Operations team, SMART-1 Science Technology Working Team, SMART-1 Impact Campaign Team http://sci.esa.int/smart-1/, www.esa.int BHF 2007 Europe to the Moon: spacecraft, launch, operations (ESA+ industry) Instruments PIs + TIs from 5 countries Co-Is from 13 ESA + 6 non European countries BHF 2007 Solar Electric Primary Propulsion: 7 g thrust, 60 liters Xenon to the Moon BHF 2007 SMART-1: With Sun power to the Moon on 60 liters of fuel BHF 2007 Solar Electric Propulsion to the Moon – Launched 27 Sept 2003 as Auxiliary passenger on Ariane 5 into Geostationary Transfer Orbit – Spiral out cruise (13.5 month): – lunar capture 15 November 2004, spiral down – arrival 15 March 05 science(450 -2900 km): commissioned spacecraft/instruments at Moon, nominal science mission March-July 05 – reboosting 2 aug-15 Sept 05 to increase orbit lifetime for extension phase until Aug 2006 BHF 2007 AMIE /SMART-1 End August 2006 Earth set & rise from the Moon X AMIE /SMART-1 May 21st, 2004 Earth view from ~70’000 km BHF 2007 First European Far Side Image of The Moon by AMIE/SMART-1 North Pole 12 Nov. 2004 BHF 2007 Moon Phase & Mission Extension MISSION EXTENSION Apolune Perilune Moon Radius BHF 2007 Sun SMART-1 light Reflecte d Sun Triple junction solar cells Multicolor microcamera light KA-band antenna Laser Link Communication X-Ray Spectrometer On-board computer Lithium ion batteries Infrared Spectrometer OBAN Platform Autonomy Technologies Miniaturisation BHF 2007 SMART-1 Science and Exploration Themes
    [Show full text]
  • List of Targets for the Lunar II Observing Program (PDF File)
    Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc.
    [Show full text]
  • A Study About a Lunar Dome Near Hortensius: Morphometry and Mode of Formation
    47th Lunar and Planetary Science Conference (2016) 1005.pdf A study about a lunar dome near Hortensius: Morphometry and mode of formation. M. Wirths1, R. Lena2 , A. Mallama3 - Geologic Lunar Research (GLR) Group. 1km 67 Camino Observatorio, Baja California, Mexico; [email protected]; 2 Via Cartesio 144, sc. D, 00137 Rome, Italy; [email protected]; 314012 Lancaster Lane, Bowie, MD, 20715, USA, [email protected] Introduction: Lunar mare domes formed during the later stages of volcanic episode on the Moon, char- acterized by a decreasing rate of lava extrusion and comparably low eruption temperatures, resulted in the formation of effusive domes. Important clusters of lu- nar domes are observed in the Hortensius/Milichius/T. Mayer region in Mare Insularum and in Mare Tranquillitatis around the craters Arago and Cauchy. The region west of Copernicus extending from Hortensius to Milichius and to Tobias Mayer contains large numbers of lunar domes and cones, evidence of past volcanism on the lunar surface [1-3]. A compre- hensive map of the area was produced by GLR group, including the six lunar domes north of Hortensius and three lower domes to the south of Hortensius [4]. Fig. 1. Telescopic image acquired on May 1, 2012, at 03:44 In this contribution we provide an analysis of an- UT with a 450 mm aperture Starmaster driven Dobsonian other low dome to the east of Hortensius, termed H11, (M. Wirths). Morphometric properties of the domes H1-H7 located at 26.87° W and 6.88° N and with a prominent have been examined in previous studies [1, 3].
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]