Open Zitomer.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Zitomer.Pdf The Pennsylvania State University The Graduate School College of Agricultural Sciences MYCOTOXICOLOGY TO ACCOMPANY PHYLOGENETIC REVISIONS TO THE GENUS FUSARIUM A Thesis in Plant Pathology by Nicholas C. Zitomer © 2006 Nicholas C. Zitomer Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2006 The thesis of Nicholas C. Zitomer was reviewed and approved* by the following: Gretchen A. Kuldau Assistant Professor of Plant Pathology Thesis Co-Adviser Co-Chair of Committee David M. Geiser Associate Professor of Plant Pathology Thesis Co-Adviser Co-Chair of Committee Erick D. DeWolf Assistant Professor of Plant Pathology Douglas D. Archibald Research Associate, College of Agricultural Sciences A. Daniel Jones Senior Scientist, Department of Chemistry Barbara J. Christ Professor of Plant Pathology Head of the Department of Plant Pathology *Signatures are on file in The Graduate School. iii ABSTRACT Fusarium species traditionally have been and still are problematic to identify using morphology. This is an issue of concern since many fusaria are toxigenic, producing such toxins as trichothecenes, fumonisins and zearalenone. Fumonisins are sphingolipid analogues associated primarily with the Gibberella fujikuroi species complex (GFC). Fusarium trichothecenes are sesquiterpenoid mycotoxins, and are generally divided into two categories: type A, which lack oxygen at the C-8 position and include T-2 toxin and diacetoxyscirpenol, and type B, which include nivalenol and deoxynivalenol. Zearalenone is an estrogenic mycotoxin. Phylogenetically characterized isolates were subjected to mycotoxin analysis via high performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS), HPLC and electrospray ionization mass spectrometry (HPLC/ESI-MS), or HPLC using fluorescence detection. Isolates with previous reports of toxin production outside of the groups analyzed were also included in the mycotoxin analyses. Our results reveal scattered toxin production within the GFC (fumonisin) and the trichothecene-producing fusaria (trichothecenes and zearalenone), as well as by a few isolates outside of these groups. Phylogenetic placement in either group is predictive of toxin production potential, but not toxin production, level or toxin class (type A or type B trichothecenes). iv TABLE OF CONTENTS List of Tables……………………………………………………..…………….………..vii List of Figures………..……………….……………….………………………………...viii Acknowledgements……...…………………………………………………………….….ix CHAPTER 1: Introduction and Literature Review...………………………………..…….1 I. Literature Review…………………………………….……….…………….…………..1 A. History of Fusarium Taxonomy..……………………..……………..………...1 B. New Phylogenetic Concepts in Fusarium..…………………………...……….3 C. Fusarium Mycotoxins…………..………………………...……………………5 i. Fumonisins……………………………………………………...……….5 ii. Zearalenone……………………………………………………………..7 iii. Trichothecenes………………………………………………...……….8 D. Mycotoxicology of Fusarium ……………………………………...……...…11 i. Regulation of Toxin Production…..…………………………………...15 ii. Biosynthesis………………………………………………...…………17 E. Mycotoxin Detection and Quantification..……………………..……………..19 i. Trichothecenes……………………….………………..……………….19 ii. Fumonisins………………...…………………………………...……..20 iii. Zearalenone…………………………………………………..………20 II. Research Objectives………………………………………...…………………..…….21 A. Project Rationale………………………………………...……………………21 B. Research Objectives…………………………………….…………………….22 i. Survey of Fumonisin Production in the Gibberella fujikuroi Species Complex…………………………………………………..…….………..22 ii. Evaluation of Trichothecene Production Using New Phylogenetic Data..……………………………………………..…………….……….22 iii. Evaluation of Zearalenone Production Using New Phylogenetic Data...…………………..………………………………………………23 v CHAPTER 2: The Phylogenetics of Trichothecene Production in Fusarium..……...…..24 I. Acknowledgements …………………………………………………………………...24 II. Abstract ……..………………………………………………………………………..24 III. Introduction…...……………………………………………………………………...25 IV. Methods………...……………………………………………………………………31 A. Chemicals and Reagents…………………………………...………....31 B. Culturing……………………………………………………………...31 C. DNA Analyses…..……………………………………………,………32 D. Extraction and Sample Preparation…………………………………...33 E. HPLC-MS……………………………………………………………..33 F. Data Analysis………………………………………………….……....35 V. Results and Discussion…………..…..………………………………………………..38 A. Phylogenetics of the Trichothecene-Producing Fusaria..……………..38 B. Detection Levels of Trichothecenes and Toxin Responses…………...39 C. Trichothecene Production in Clade 1………………………………....47 D. Trichothecene Production in Clade 2…………...…….……………....51 E. Trichothecene Production in Clade 3…………………….…………...60 F. Trichothecene Production in Clade 4…………………………….…...63 G. Conclusions.......................................…………………………….…...66 CHAPTER 3: The Phylogenetics of Zearalenone Production in Fusarium…….…..…...68 I. Acknowledgements…………………………………………………………………....68 II. Abstract ……………………………………………………………………………....68 III. Introduction………………….…………………………………………………….…69 IV. Methods…………………………………………………………………………...…76 A. Chemicals and Reagents………………………………………….…..76 B. Culturing……………………………………………………………...76 C. Extraction and Sample Preparation…………………………………...77 D. HPLC…………………………………………………………………78 V. Results...……………………………………………………………………………...78 VI. Discussion……………………………………………………………………….…..86 CHAPTER 4: Fumonisin Production Investigated Within a Phylogenetic Analysis of the Gibberella fujikuroi Species Complex…………………………………………………...93 I. Acknowledgements……………………………………………………………………93 II. Abstract ………………………………………………………………………………93 III. Introduction……………………………………………………………………….....94 IV. Materials and Methods……………………………………………………………....98 A. Fungal Strains……..…………………………………...……………..98 vi B. Culture Prepartion…...………………………………………………..98 C. Extraction and Cleanup .……………………………………………...99 D. LC-MS………………………………………………………………100 V. Results and Discussion……………..………………………………………………..101 A. Impetus and Methodological Results……………………………..…101 B. Fumonisin Production in the African Clade of the GFC………….…104 C. Fumonisin Production in the Asian Clade of the GFC……………....110 D. Fumonisin Production in the American Clade of the GFC………….113 E. Other isolates Analyzed……………………………………………...116 Chapter 5: Conclusion…………………………………………………………………..138 References………………………………………………………………………………141 Appendices……………………………………………………………………………...166 Appendix A: Example Mass Spectra of Trichothecenes and Hydrocortisone………………………………………………………….166 Appendix B: Type A and B Trichothecene Production by Strain in Phylogenetic Order…………………………………………………..…176 Appendix C: Strain List for the Fumonisin Assays………….………....185 Appendix D: Strain List for the Trichothecene Analysis……………….191 vii LIST OF TABLES Table 1.1: Fusarium Species with Reported Fumonisin Production .…….…..………....12 Table 1.2: Fusarium Species Within the Trichothecene-Producing Clade and Their Reported Trichothecene and Zearalenone Production..……………….…………………14 Table 2.1: Masses of Trichothecene Ions and Fragment Ions Used for Mass Spectrometry Quantification and Verification……..…………………………………………………...37 Table 3.1: Reported Zearalenone Producers………...……..………….…………………73 Table 3.2: Summary of Pooled Zearalenone Analysis by HPLC……………………..…81 Table 3.3: Zearalenone and Zearalenol Amounts (in μg/g rice) Produced Under Three Temperature Regimes by Fusarium Species……………………..…………………...…84 Table 4.1: Fusarium Species with Reported Fumonisin Production…………...………..96 Table 4.2: Strains Within the GFC Analyzed for Toxin Production …………………..119 viii LIST OF FIGURES Fig. 1.1: The Chemical Structure of Fumonisins ……...…..………...……….………...…7 Fig. 1.2: The Chemical Structures of Zearalenone and Zearalenol.……….…….…......…8 Fig. 1.3: The Chemical Structures of Five Type A Trichothecenes ……………….....…10 Fig. 1.4: The Chemical Structures of Five Type B Trichothecenes….……...………...…11 Fig. 2.1: Structure of Type A Trichothecenes with R-Groups for Each Toxin ……..…..30 Fig. 2.2: Structure of Type B Trichothecenes with R-Groups for Each Toxin …..……...30 Fig. 2.3: An Example LC/MS Chromatogram Showing Separation of Trichothecene Mycotoxins in Run of Standards………………………………………………….……...35 Fig. 2.4: Phylogenetic Tree Resulting from Maximum Parsimony Analysis……..……..43 Fig 2.5: Profiles of Individual Toxin Production Within Each Clade of the Trichothecene- Producing Fusaria………………………………………………………………….…….44 Fig. 2.6: The Observed Toxin Response of all Isolates Within Each Clade Displayed by Percent Total of Toxin Amounts Produced…………………………………………...…45 Fig. 2.7: Phylogenetic Tree Resulting from Maximum Parsimony Analysis Showing Trichothecene Concentrations……………………………………………………….…..46 Fig. 3.1: The Chemical Structures of Zearalenone and Zearalenol…………………..….72 Fig. 3.2: Phylogenetic Tree Resulting from Maximum Parsimony Analysis of Multiple Gene Regions from Species Representing the Diversity of the Trichothecene-Producing Fusaria……………………………………………………………………………………75 Fig. 3.3: Phylogenetic Tree Representing the Diversity of the Trichothecene-Producing Fusaria with Zearalenone-Producing Species Identified Upon It………………………..83 Fig. 4.1: The Chemical Structure of Select Fumonisins……...………………………….95 Fig. 4.2: Phylogenetic Tree Created by Neighbor Joining Analysis of EF-1α .………..137 ix ACKNOWLEDGEMENTS I would like to thank my thesis advisers, Gretchen Kuldau and David Geiser, for all their support and guidance during this process. In addition, I'd like to thank the rest of my thesis committee members for their invaluable assistance and expertise in guiding
Recommended publications
  • Sugarcane Wilt: New Insights Into Pathogen Identity, Variability and Pathogenicity
    ® Functional Plant Science and Biotechnology ©2012 Global Science Books Sugarcane Wilt: New Insights into Pathogen Identity, Variability and Pathogenicity Rasappa Viswanathan* • Muthusamy Poongothai • Palaniyandi Malathi • Amalraj R. Sundar Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore 641007, India Corresponding author : * [email protected] ABSTRACT Wilt of sugarcane, a fungal disease is known to cause significant damage to sugarcane production and productivity in India and other countries for the past one century. Although sugarcane wilt is known in India for a long time, research work on this important disease is totally lacking. The causal organism was found to vary with time and investigator and could not reproduce the disease under artificial conditions in the field. We have made detailed disease surveys in 13 major sugarcane growing states in the country and 263 Fusarium isolates were isolated. We have established the variation in Fusarium isolates associated with sugarcane wilt, based on cultural, morphological, pathogenic and molecular characterization of 117 isolates. Critical observations in the conventional techniques combined with molecular biological approaches clearly established that Fusarium sacchari as the causal agent of the disease. Other Fusarium sp isolated from wilt infected sugarcane stalks were found to be either secondary invaders or non-pathogenic in nature. We have developed an artificial simulation technique to induce wilt in sugarcane under field conditions and
    [Show full text]
  • Diversity and Evolution of Fusarium Species in the Gibberella Fujikuroi Complex
    Fungal Diversity Reviews, Critiques and New Technologies Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex Kvas, M.1*, Marasas, W.F.O.1, Wingfield, B.D.2, Wingfield, M.J.1 and Steenkamp, E.T.1,* 1Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa 2Department of Genetics, DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa Kvas, M., Marasas, W.F.O., Wingfield, B.D., Wingfield, M.J. and Steenkamp, E.T. (2009). Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Diversity 34: 1-21. The Gibberella fujikuroi complex (GFC) is a monophyletic taxon that includes an assemblage of Fusarium species with similar and overlapping morphological traits that complicates their differentiation. Most of the species in this complex are associated with devastating diseases of many economically important plants. They also produce a remarkably wide range of secondary metabolites or mycotoxins that contaminate food/feed worldwide and can subsequently cause a variety of diseases in humans and animals. Recent developments in molecular systematics have revealed that the Gibberella fujikuroi complex includes at least 50 distinct species or phylogenetic lineages. Of these, 34 species have been formally described using morphological characters, 10 have been also described based on sexual fertility and at least 20 species produce one or more mycotoxins. Here, we review the most important criteria for recognising and defining Fusarium species in the Gibberella fujikuroi complex.
    [Show full text]
  • Intracellular Mechanisms of A-Trichothecenes Involved in the Regulation of Cell Survival and Apoptosis: a Review
    Journal of Microbiology, Biotechnology and Maruniakova et al. 2012 : 1 (February Special issue) 661-670 Food Sciences A REVIEW INTRACELLULAR MECHANISMS OF A-TRICHOTHECENES INVOLVED IN THE REGULATION OF CELL SURVIVAL AND APOPTOSIS: A REVIEW Nora Maruniaková*, Zuzana Baková, Attila Kádasi, Jozef Bulla, Marcela Capcarová, Adriana Kolesárová Address: Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic *Corresponding author: [email protected] ABSTRACT Mycotoxins are secondary metabolites produced by filamentous fungi. Mycotoxins are worldwide contaminats of animal feed, food and food products. T-2 toxin and its metabolit HT-2 toxin are one of the most toxic mycotoxins of type A trichothecenes, which are produced mainly by Fusarium species. T-2 and HT-2 toxin cause a different toxic effects in both animal and human. They are inhibitors of DNA and RNA synthesis and synthesis of proteins in several cellular systems, immunosuppressive agents, induce lesions in hematopoetic, lymphoid and digestive tract, impact reproduction functions and cause oxidative stress. T-2 toxin is a strong cytotoxic mycotoxin, which can induce apoptosis of various cells. This review examine the T-2 toxin induce cytotoxicity up to apoptosis on various cells, for instance cells of imunite system, on ovarian granulosa cells as well as induction of maternal and fetal toxicity. Keywords: mycotoxins, A-trichothecenes, cytotoxicity, apoptosis. 661 JMBFS / Maruniakova et al. 2012 : 1 (February Special issue) 661-670 INTRODUCTION Mycotoxins are secondary metabolites produced by moulds that contaminate a large variety of grains and feedstuffs worldwide (Schollenberger et al., 2007).
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: a Systematic Review
    molecules Review Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review Magdalena Polak-Sliwi´ ´nska* and Beata Paszczyk Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-89-523-45-84 Abstract: Trichothecene mycotoxins are sesquiterpenoid compounds primarily produced by fungi in taxonomical genera such as Fusarium, Myrothecium, Stachybotrys, Trichothecium, and others, under specific climatic conditions on a worldwide basis. Fusarium mold is a major plant pathogen and produces a number of trichothecene mycotoxins including deoxynivalenol (or vomitoxin), nivalenol, diacetoxyscirpenol, and T-2 toxin, HT-2 toxin. Monogastrics are sensitive to vomitoxin, while poultry and ruminants appear to be less sensitive to some trichothecenes through microbial metabolism of trichothecenes in the gastrointestinal tract. Trichothecene mycotoxins occur worldwide however both total concentrations and the particular mix of toxins present vary with environmental condi- tions. Proper agricultural practices such as avoiding late harvests, removing overwintered stubble from fields, and avoiding a corn/wheat rotation that favors Fusarium growth in residue can reduce trichothecene contamination of grains. Due to the vague nature of toxic effects attributed to low concentrations of trichothecenes, a solid link between low level exposure and a specific trichothecene is difficult to establish. Multiple factors, such as nutrition, management, and environmental con- ditions impact animal health and need to be evaluated with the knowledge of the mycotoxin and concentrations known to cause adverse health effects. Future research evaluating the impact of low-level exposure on livestock may clarify the potential impact on immunity.
    [Show full text]
  • In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography Article In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity Sandra Debevere 1,2, An Cools 3, Siegrid De Baere 1, Geert Haesaert 4, Michael Rychlik 5, Siska Croubels 1,† and Veerle Fievez 2,*,† 1 Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; [email protected] (S.D.); [email protected] (S.D.B.); [email protected] (S.C.) 2 Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium 3 Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; [email protected] 4 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; [email protected] 5 Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany; [email protected] * Correspondence: [email protected]; Tel.: +32-9-264-9002 † Shared last author. Received: 3 January 2020; Accepted: 31 January 2020; Published: 5 February 2020 Abstract: Ruminants are generally considered to be less susceptible to the effects of mycotoxins than monogastric animals as the rumen microbiota are capable of detoxifying some of these toxins. Despite this potential degradation, mycotoxin-associated subclinical health problems are seen in dairy cows. In this research, the disappearance of several mycotoxins was determined in an in vitro rumen model and the effect of realistic concentrations of those mycotoxins on fermentation was assessed by volatile fatty acid production.
    [Show full text]
  • Chemical Elements in Ascomycetes and Basidiomycetes
    Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M.
    [Show full text]
  • Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
    available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N.
    [Show full text]
  • Vomitoxin: Natural Occurrence on Cereal Grains and Significance As a Refusal and Emetic Factor to Swine
    Vomitoxin: Natural Occurrence on Cereal Grains and Significance as a Refusal and Emetic Factor to Swine R. F. Vesonder B.S. and C. W. Hesseltine Ph.D.* Fifty 12,13-epoxytrichothecenes have been reported in the literature; of these diacetoxyscirpenol, T-2 toxin, nivalenol and vomitoxin have been naturally occurring in cereal grains throughout the world. Vomitoxin is produced in ears of corn prior to harvest when wet, cool weather precedes which favours Gibberella zeae growth. This type of infected corn, which often contains vomitoxin, is associated with the refusal and emetic syndrome exhibited by swine. Since 1916, emesis in humans resulting from grains is indicated by growth of the mould Fusaria in the field is meagre. The ability ingestion of food prepared from Fusarium­ G. zeae (perfect stage of F. graminearuml of G. zeae to render grains unwholesome for infected cereal grains has been recorded in on the kernels and flowering head. On corn, consumption by swine and other farm several areas around the world. In the Soviet G. zeae occurs as a reddish mould that animals may be dependent on the type of Union, .it was known as the drunken bread begins as observable growth on the ear tip. hybrid, but studies of whether G. zeae intoxication. Sporadic food poisoning featur­ This condition is referred to as Gibberella or infection can be controlled by breeding 8 ing vomiting, nausea, somnolence, headache pink ear rot • new plants have not been conducted. and convulsion occurred in Japan during Outbreaks of barley scabbed with Emetic substances were extracted from the 1950's and the late 1940's.
    [Show full text]
  • Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions
    toxins Review Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions Lakshmipriya Perincherry , Justyna Lalak-Ka ´nczugowska and Łukasz St˛epie´n* Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy´nska34, 60-479 Pozna´n,Poland; [email protected] (L.P.); [email protected] (J.L.-K.) * Correspondence: [email protected] Received: 29 October 2019; Accepted: 12 November 2019; Published: 14 November 2019 Abstract: Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection. Keywords: fungal pathogens; Fusarium; pathogenicity; secondary metabolites Key Contribution: The review summarized the knowledge and recent reports on the involvement of Fusarium mycotoxins in plant infection processes, as well as the consequences for plant metabolism and physiological changes related to the pathogenesis.
    [Show full text]
  • AR TICLE Mitochondrial Introgression And
    doi:10.5598/imafungus.2018.09.01.04 IMA FUNGUS · 9(1): 37–48 (2018) Mitochondrial introgression and interspecies recombination in the ARTICLE Fusarium fujikuroi species complex Gerda Fourie, Nicolaas A. Van der Merwe, Brenda D. Wingfield, Mesfin Bogale, Michael J. Wingfield, and Emma T. Steenkamp Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; corresponding author e-mail: [email protected] Abstract: The Fusarium fujikuroi species complex (FFSC) is an economically Key words: important monophyletic lineage in the genus Fusarium. Incongruence observed evolutionary history among mitochondrial gene trees, as well as the multiple non-orthologous copies FFSC of the internal transcribed spacer region of the ribosomal RNA genes, suggests heteroplasmy-associated mitochondrial recombination that the origin and history of this complex likely involved interspecies gene hybridization flow. Based on this hypothesis, the mitochondrial genomes of non-conspecific introgression species should harbour signatures of introgression or introgressive hybridization. species concepts The aim of this study was therefore to search for recombination between the mitochondrial genomes of different species in the FFSC. Using methods based on mt genome sequence similarity, five significant recombinant regions in both gene and intergenic regions were detected. Using coalescent-based methods and the sequences for individual mt genes, various ancestral recombination events between different lineages of the FFSC were also detected. These findings suggest that interspecies gene flow and introgression are likely to have played key roles in the evolution of the FFSC at both ancient and more recent time scales. Article info: Submitted: 12 January 2018; Accepted: 18 February 2018; Published: 27 February 2018.
    [Show full text]
  • Ergotism and Other Mycotoxicoses in Ancient Mesopotamia?
    Ergotism and Other Mycotoxicoses in Ancient Mesopotamia? Robert D. Biggs The Oriental Institute, University of Chicago It is well known that the synthetic hallucinogen LSD (d-lysergic acid diethylamide) is derived from ergot, a fungus that grows on a variety of grasses. While the synthetic form is a relatively recent formula- tion and has inspired a scholarly literature of its own, the effect of ergot in human health has also been studied extensi vely in recent years I. When ingested in sufficient quantities, ergot produces a disease called ergotism which, in serious cases, has two variants, gangrenous and convulsive'. The designation "convul- sive" does not refer to true convulsions when consciousness is lost. The symptoms of convulsive ergotism include tingling in the fingers, crawling sensations on the skin, headaches, vertigo, muscle spasms leading to epileptic type convulsions, confusion, delusions, hallucinations, vomiting, and diarrhea", In connection with some of these manifestations, it is worth mentioning that there has been a serious suggestion that 4 ergotism was a major factor in the infamous Salem witchcraft affair of 1691 and 1692 • It has also been implicated in fa grande peur in France in 17895• We are all familiar with a number of fungi, which include mushrooms, molds, and mildews. We are also aware of the toxicity of some, especially mushrooms, but nevertheless a number of people each year are poisoned because they make a bad choice of which mushrooms to eat. Mushrooms, of course, are very visible fungi about which a great deal is published and about which many people consider themselves knowledgeable.
    [Show full text]