Kernel Development in Userspace - the Rump Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Debugging the Freebsd Kernel
Introduction to Debugging the FreeBSD Kernel John H. Baldwin Yahoo!, Inc. Atlanta, GA 30327 [email protected], http://people.FreeBSD.org/˜jhb Abstract used either directly by the user or indirectly via other tools such as kgdb [3]. Just like every other piece of software, the The Kernel Debugging chapter of the FreeBSD kernel has bugs. Debugging a ker- FreeBSD Developer’s Handbook [4] covers nel is a bit different from debugging a user- several details already such as entering DDB, land program as there is nothing underneath configuring a system to save kernel crash the kernel to provide debugging facilities such dumps, and invoking kgdb on a crash dump. as ptrace() or procfs. This paper will give a This paper will not cover these topics. In- brief overview of some of the tools available stead, it will demonstrate some ways to use for investigating bugs in the FreeBSD kernel. FreeBSD’s kernel debugging tools to investi- It will cover the in-kernel debugger DDB and gate bugs. the external debugger kgdb which is used to perform post-mortem analysis on kernel crash dumps. 2 Kernel Crash Messages 1 Introduction The first debugging service the FreeBSD kernel provides is the messages the kernel prints on the console when the kernel crashes. When a userland application encounters a When the kernel encounters an invalid condi- bug the operating system provides services for tion (such as an assertion failure or a memory investigating the bug. For example, a kernel protection violation) it halts execution of the may save a copy of the a process’ memory current thread and enters a “panic” state also image on disk as a core dump. -
Process and Memory Management Commands
Process and Memory Management Commands This chapter describes the Cisco IOS XR software commands used to manage processes and memory. For more information about using the process and memory management commands to perform troubleshooting tasks, see Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide. • clear context, on page 2 • dumpcore, on page 3 • exception coresize, on page 6 • exception filepath, on page 8 • exception pakmem, on page 12 • exception sparse, on page 14 • exception sprsize, on page 16 • follow, on page 18 • monitor threads, on page 25 • process, on page 29 • process core, on page 32 • process mandatory, on page 34 • show context, on page 36 • show dll, on page 39 • show exception, on page 42 • show memory, on page 44 • show memory compare, on page 47 • show memory heap, on page 50 • show processes, on page 54 Process and Memory Management Commands 1 Process and Memory Management Commands clear context clear context To clear core dump context information, use the clear context command in the appropriate mode. clear context location {node-id | all} Syntax Description location{node-id | all} (Optional) Clears core dump context information for a specified node. The node-id argument is expressed in the rack/slot/module notation. Use the all keyword to indicate all nodes. Command Default No default behavior or values Command Modes Administration EXEC EXEC mode Command History Release Modification Release 3.7.2 This command was introduced. Release 3.9.0 No modification. Usage Guidelines To use this command, you must be in a user group associated with a task group that includes appropriate task IDs. -
Post Mortem Crash Analysis
Post Mortem Crash Analysis Johan Heander & Magnus Malmborn January 14, 2007 Abstract To improve the quality and reliability of embedded systems it is important to gather information about errors in units already sold and deployed. To achieve this, a system for transmitting error information from the customer back to the developers is needed, and the developers must also have a set of tools to analyze the error reports. The purpose of this master thesis was to develop a fully functioning demon- stration system for collection, transmission and interpretation of error reports from Axis network cameras using the Linux operating system. The system has been shown to handle both kernel and application errors and conducts automatic analysis of received data. It also uses standard HTTP protocol for all network transfers making it easy to use even on firewalled net- works. i ii Acknowledgement We would like to thank our LTH supervisor Jonas Skeppstedt for all he has taught us about computer science in general and operating systems and the C programming language in particular. We would also like to thank Mikael Starvik at Axis Communications for quickly providing us with all hardware and information we needed to complete this thesis, and for providing us with support during our implementation and writing. Finally we thank all the developers working at Axis Communications, many of whom have provided input and reflections on our work. iii iv Contents 1 Introduction 1 1.1 Problem description . 1 1.2 Problem analysis . 1 2 Background 3 2.1 Kernel crashes . 3 2.2 User space crashes . -
Architectural Support for Dynamic Linking Varun Agrawal, Abhiroop Dabral, Tapti Palit, Yongming Shen, Michael Ferdman COMPAS Stony Brook University
Architectural Support for Dynamic Linking Varun Agrawal, Abhiroop Dabral, Tapti Palit, Yongming Shen, Michael Ferdman COMPAS Stony Brook University Abstract 1 Introduction All software in use today relies on libraries, including All computer programs in use today rely on software standard libraries (e.g., C, C++) and application-specific libraries. Libraries can be linked dynamically, deferring libraries (e.g., libxml, libpng). Most libraries are loaded in much of the linking process to the launch of the program. memory and dynamically linked when programs are Dynamically linked libraries offer numerous benefits over launched, resolving symbol addresses across the applica- static linking: they allow code reuse between applications, tions and libraries. Dynamic linking has many benefits: It conserve memory (because only one copy of a library is kept allows code to be reused between applications, conserves in memory for all applications that share it), allow libraries memory (because only one copy of a library is kept in mem- to be patched and updated without modifying programs, ory for all the applications that share it), and allows enable effective address space layout randomization for libraries to be patched and updated without modifying pro- security [21], and many others. As a result, dynamic linking grams, among numerous other benefits. However, these is the predominant choice in all systems today [7]. benefits come at the cost of performance. For every call To facilitate dynamic linking of libraries, compiled pro- made to a function in a dynamically linked library, a trampo- grams include function call trampolines in their binaries. line is used to read the function address from a lookup table When a program is launched, the dynamic linker maps the and branch to the function, incurring memory load and libraries into the process address space and resolves external branch operations. -
CS429: Computer Organization and Architecture Linking I & II
CS429: Computer Organization and Architecture Linking I & II Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 5, 2018 at 09:23 CS429 Slideset 23: 1 Linking I A Simplistic Translation Scheme m.c ASCII source file Problems: Efficiency: small change Compiler requires complete re-compilation. m.s Modularity: hard to share common functions (e.g., printf). Assembler Solution: Static linker (or Binary executable object file linker). p (memory image on disk) CS429 Slideset 23: 2 Linking I Better Scheme Using a Linker Linking is the process of m.c a.c ASCII source files combining various pieces of code and data into a Compiler Compiler single file that can be loaded (copied) into m.s a.s memory and executed. Linking could happen at: Assembler Assembler compile time; Separately compiled m.o a.o load time; relocatable object files run time. Linker (ld) Must somehow tell a Executable object file module about symbols p (code and data for all functions defined in m.c and a.c) from other modules. CS429 Slideset 23: 3 Linking I Linking A linker takes representations of separate program modules and combines them into a single executable. This involves two primary steps: 1 Symbol resolution: associate each symbol reference throughout the set of modules with a single symbol definition. 2 Relocation: associate a memory location with each symbol definition, and modify each reference to point to that location. CS429 Slideset 23: 4 Linking I Translating the Example Program A compiler driver coordinates all steps in the translation and linking process. -
Linux Core Dumps
Linux Core Dumps Kevin Grigorenko [email protected] Many Interactions with Core Dumps systemd-coredump abrtd Process Crashes Ack! 4GB File! Most Interactions with Core Dumps Poof! Process Crashes systemd-coredump Nobody abrtd Looks core kdump not Poof! Kernel configured Crashes So what? ● Crashes are problems! – May be symptoms of security vulnerabilities – May be application bugs ● Data corruption ● Memory leaks – A hard crash kills outstanding work – Without automatic process restarts, crashes lead to service unavailability ● With restarts, a hacker may continue trying. ● We shouldn't be scared of core dumps. – When a dog poops inside the house, we don't just `rm -f $poo` or let it pile up, we try to figure out why or how to avoid it again. What is a core dump? ● It's just a file that contains virtual memory contents, register values, and other meta-data. – User land core dump: Represents state of a particular process (e.g. from crash) – Kernel core dump: Represents state of the kernel (e.g. from panic) and process data ● ELF-formatted file (like a program) User Land User Land Crash core Process 1 Process N Kernel Panic vmcore What is Virtual Memory? ● Virtual Memory is an abstraction over physical memory (RAM/swap) – Simplifies programming – User land: process isolation – Kernel/processor translate virtual address references to physical memory locations 64-bit Process Virtual 8GB RAM Address Space (16EB) (Example) 0 0 16 8 EB GB How much virtual memory is used? ● Use `ps` or similar tools to query user process virtual memory usage (in KB): – $ ps -o pid,vsz,rss -p 14062 PID VSZ RSS 14062 44648 42508 Process 1 Virtual 8GB RAM Memory Usage (VSZ) (Example) 0 0 Resident Page 1 Resident Page 2 16 8 EB GB Process 2 How much virtual memory is used? ● Virtual memory is broken up into virtual memory areas (VMAs), the sum of which equal VSZ and may be printed with: – $ cat /proc/${PID}/smaps 00400000-0040b000 r-xp 00000000 fd:02 22151273 /bin/cat Size: 44 kB Rss: 20 kB Pss: 12 kB.. -
The Complete Freebsd
The Complete FreeBSD® If you find errors in this book, please report them to Greg Lehey <grog@Free- BSD.org> for inclusion in the errata list. The Complete FreeBSD® Fourth Edition Tenth anniversary version, 24 February 2006 Greg Lehey The Complete FreeBSD® by Greg Lehey <[email protected]> Copyright © 1996, 1997, 1999, 2002, 2003, 2006 by Greg Lehey. This book is licensed under the Creative Commons “Attribution-NonCommercial-ShareAlike 2.5” license. The full text is located at http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode. You are free: • to copy, distribute, display, and perform the work • to make derivative works under the following conditions: • Attribution. You must attribute the work in the manner specified by the author or licensor. • Noncommercial. You may not use this work for commercial purposes. This clause is modified from the original by the provision: You may use this book for commercial purposes if you pay me the sum of USD 20 per copy printed (whether sold or not). You must also agree to allow inspection of printing records and other material necessary to confirm the royalty sums. The purpose of this clause is to make it attractive to negotiate sensible royalties before printing. • Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. • For any reuse or distribution, you must make clear to others the license terms of this work. • Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. -
Protecting Against Unexpected System Calls
Protecting Against Unexpected System Calls C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray, J. H. Hartman Department of Computer Science University of Arizona Tucson, AZ 85721 {linnc,mohan,bakers,collberg,debray,jhh}@cs.arizona.edu Abstract writing the return address on the stack with the address of the attack code). This then causes the various actions This paper proposes a comprehensive set of techniques relating to the attack to be carried out. which limit the scope of remote code injection attacks. These techniques prevent any injected code from mak- In order to do any real damage, e.g., create a root ing system calls and thus restrict the capabilities of an shell, change permissions on a file, or access proscribed attacker. In defending against the traditional ways of data, the attack code needs to execute one or more sys- harming a system these techniques significantly raise the tem calls. Because of this, and the well-defined system bar for compromising the host system forcing the attack call interface between application code and the underly- code to take extraordinary steps that may be impractical ing operating system kernel, many researchers have fo- in the context of a remote code injection attack. There cused on the system call interface as a convenient point are two main aspects to our approach. The first is to for detecting and disrupting such attacks (see, for exam- embed semantic information into executables identify- ple, [5, 13, 17, 19, 29, 32, 35, 38]; Section 7 gives a more ing the locations of legitimate system call instructions; extensive discussion). -
Cray XT Programming Environment's Implementation of Dynamic Shared Libraries
Cray XT Programming Environment’s Implementation of Dynamic Shared Libraries Geir Johansen, Cray Inc. Barb Mauzy, Cray Inc. ABSTRACT: The Cray XT Programming Environment will support the implementation of dynamic shared libraries in future Cray XT CLE releases. The Cray XT implementation will provide the flexibility to allow specific library versions to be chosen at both link and run times. The implementation of dynamic shared libraries allows dynamically linked executables built with software other than the Cray Programming Environment to be run on the Cray XT. KEYWORDS: Cray XT, Programming Environment CUG 2009 Proceedings 1 of 10 information in physical memory that can be shared among 1.0 Introduction multiple processes. This feature potentially reduces the memory allocated for a program on a compute node. This The goal of this paper is provide application analysts advantage becomes more important as the number of a description of Cray XT Programming Environment‟s available cores increases. implementation of dynamic shared libraries. Topics Another advantage of dynamically linked executables covered include the building of dynamic shared library is that the system libraries can be upgraded and take effect programs, configuring the version of dynamic shared without the need to relink applications. The ability to libraries to be used at execution time, and the execution of install library changes without having to rebuild a program a dynamically linked program not built with the Cray XT is a significant advantage in quickly addressing problems, Programming Environment. While a brief description of such as a security issue with a library code. The the Cray XT system implementation of dynamic shared experiences of system administrators have shown that libraries will be given, the Cray XT system architecture codes using dynamic shared libraries are more resilient to and system administration issues of dynamic shared system upgrades than codes using static libraries [1]. -
Dynamic Linking Considered Harmful
DYNAMIC LINKING CONSIDERED HARMFUL 1 WHY WE NEED LINKING ¡ Want to access code/data defined somewhere else (another file in our project, a library, etc) ¡ In compiler-speak, “we want symbols with external linkage” § I only really care about functions here ¡ Need a mechanism by which we can reference symbols whose location we don’t know ¡ A linker solves this problem. Takes symbols annotated by the compiler (unresolved symbols) and patches them 2 DYNAMIC LINKING ¡ We want to: ¡ use code defined somewhere else, but we don’t want to have to recompile/link when it’s updated ¡ be able to link only those symbols used as runtime (deferred/lazy linking) ¡ be more efficient with resources (may get to this later) 3 CAVEATS ¡ Applies to UNIX, particularly Linux, x86 architecture, ELF Relevant files: -glibcX.X/elf/rtld.c -linux-X.X.X/fs/exec.c, binfmt_elf.c -/usr/include/linux/elf.h ¡ (I think) Windows linking operates similarly 4 THE BIRTH OF A PROCESS 5 THE COMPILER ¡ Compiles your code into a relocatable object file (in the ELF format, which we’ll get to see more of later) ¡ One of the chunks in the .o is a symbol table ¡ This table contains the names of symbols referenced and defined in the file ¡ Unresolved symbols will have relocation entries (in a relocation table) 6 THE LINKER ¡ Patches up the unresolved symbols it can. If we’re linking statically, it has to fix all of them. Otherwise, at runtime ¡ Relocation stage. Will not go into detail here. § Basically, prepares program segments and symbol references for load time 7 THE SHELL fork(), exec() 8 THE KERNEL (LOADER) ¡ Loaders are typically kernel modules. -
Porting FUSE to L4re
Großer Beleg Porting FUSE to L4Re Florian Pester 23. Mai 2013 Technische Universit¨at Dresden Fakult¨at Informatik Institut fur¨ Systemarchitektur Professur Betriebssysteme Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann H¨artig Betreuender Mitarbeiter: Dipl.-Inf. Carsten Weinhold Erkl¨arung Hiermit erkl¨are ich, dass ich diese Arbeit selbstst¨andig erstellt und keine anderen als die angegebenen Hilfsmittel benutzt habe. Declaration I hereby declare that this thesis is a work of my own, and that only cited sources have been used. Dresden, den 23. Mai 2013 Florian Pester Contents 1. Introduction 1 2. State of the Art 3 2.1. FUSE on Linux . .3 2.1.1. FUSE Internal Communication . .4 2.2. The L4Re Virtual File System . .5 2.3. Libfs . .5 2.4. Communication and Access Control in L4Re . .6 2.5. Related Work . .6 2.5.1. FUSE . .7 2.5.2. Pass-to-Userspace Framework Filesystem . .7 3. Design 9 3.1. FUSE Server parts . 11 4. Implementation 13 4.1. Example Request handling . 13 4.2. FUSE Server . 14 4.2.1. LibfsServer . 14 4.2.2. Translator . 14 4.2.3. Requests . 15 4.2.4. RequestProvider . 15 4.2.5. Node Caching . 15 4.3. Changes to the FUSE library . 16 4.4. Libfs . 16 4.5. Block Device Server . 17 4.6. File systems . 17 5. Evaluation 19 6. Conclusion and Further Work 25 A. FUSE operations 27 B. FUSE library changes 35 C. Glossary 37 V List of Figures 2.1. The architecture of FUSE on Linux . .3 2.2. The architecture of libfs . -
Assessing Unikernel Security April 2, 2019 – Version 1.0
NCC Group Whitepaper Assessing Unikernel Security April 2, 2019 – Version 1.0 Prepared by Spencer Michaels Jeff Dileo Abstract Unikernels are small, specialized, single-address-space machine images constructed by treating component applications and drivers like libraries and compiling them, along with a kernel and a thin OS layer, into a single binary blob. Proponents of unikernels claim that their smaller codebase and lack of excess services make them more efficient and secure than full-OS virtual machines and containers. We surveyed two major unikernels, Rumprun and IncludeOS, and found that this was decidedly not the case: unikernels, which in many ways resemble embedded systems, appear to have a similarly minimal level of security. Features like ASLR, W^X, stack canaries, heap integrity checks and more are either completely absent or seriously flawed. If an application running on such a system contains a memory corruption vulnerability, it is often possible for attackers to gain code execution, even in cases where the applica- tion’s source and binary are unknown. Furthermore, because the application and the kernel run together as a single process, an attacker who compromises a unikernel can immediately exploit functionality that would require privilege escalation on a regular OS, e.g. arbitrary packet I/O. We demonstrate such attacks on both Rumprun and IncludeOS unikernels, and recommend measures to mitigate them. Table of Contents 1 Introduction to Unikernels . 4 2 Threat Model Considerations . 5 2.1 Unikernel Capabilities ................................................................ 5 2.2 Unikernels Versus Containers .......................................................... 5 3 Hypothesis . 6 4 Testing Methodology . 7 4.1 ASLR ................................................................................ 7 4.2 Page Protections ....................................................................