Technical Glass Product Catalogue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass
Envelopes in Architecture (A4113) Designing holistic envelopes for contemporary buildings Silvia Prandelli, Werner Sobek New York A4113 ENVELOPES IN ARCHITECTURE - FALL 2016 Supply chain for holistic facades 2 Systems Door systems Media Facades Rainscreen facades Dynamic facades Mesh System Structural glass/Cable Glass floors Multiple skins Shading systems Green facades Panelized systems Stick/Unitized systems 3 Curtain wall facades 4 What are the components of a façade system? 5 What are the components of a façade system? 6 What are the components of a façade system? 7 Glass 8 Glass Types Base Glass (float glass) Heat Treated Glass Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass 9 Base Glass (Float Glass) 10 3500 BC Glass Making: Man-made glass objects, mainly non-transparent glass beads, finds in Egypt and Eastern Mesopotamia 1500 BC Early hollow glass production: Evidence of the origins of the hollow glass industry, finds in Egypt 11 27 BC - 14 AD Glass Blowing: Discovery of glassblowing, attributed to Syrian craftsmen from the Sidon- Babylon area. > The blowing process has changed very little since then. 12 Flat Glass Blown sheet 13 15th century Lead Crystal Glass: During the 15th century in Venice, the first clear glass called cristallo was invented. In 1675, glassmaker George Ravenscroft invented lead crystal glass by adding lead oxide to Venetian glass. 14 16th century Sheet Glass: Larger sheets of glass were made by blowing large cylinders which were cut open and flattened, then cut into panes 19th century Sheet Glass: The first advances in automating glass manufacturing were patented in 1848 by Henry Bessemer, an English engineer. -
Collecting Vintage & Antique Milk Glass
COLLECTING MARCH 9, 2020 ADIRONDACK GIRL @ HEART MILK GLASS Some History Venetian glass makers devel- oped milky white glass some- time in the the 16th century and called it opal glass. The term we use today, milk glass, may have first been used by the Victorians who fell in love with it, due in part to its similarity to porcelain, which only the very wealthiest families could afford. After falling out of favor in the early 20th century, companies like Fenton, Westmoreland, and Indiana Glass ushered in a "golden age" of milk glass that extended After another serious down-turn, this simple white from about 1940 to 1970. glass entered our decorating consciousness again in the 2000's and it remains popular even now, in Victorian milk glass is often 2020. rather ornate and somewhat Interestingly enough, milk glass comes in a variety translucent, while newer pieces of colors, including, pink, yellow, blue, brown, and tend to be simpler and opaque. black. [You can see some examples in the blog post on this topic.] Quality milk glass has no mold marks and has a smooth, glossy Helpful Hints: finish. Florist grade glass is often I find milk glass most cheaply at garage sales, textured and contains unsightly sometimes for as little as a quarter and at thrift mold marks. stores, usually for $2-3/piece. Buy it only if you love it because you are unlikely to Fenton & Westmoreland Marks make a lot of profit on it if you try to sell it(!). If you want to sell it, colored milk glass sells better for me than plain white. -
Glass and Ceramics MARKET & OPPORTUNITIES
Glass and Ceramics MARKET & OPPORTUNITIES Glass and Ceramics MARKET & OPPORTUNITIES CONTENTS Glass and Ceramics Industry in India 2 Conclusion 9 Appendix 10 A report by KPMG for IBEF 2 MARKET & OPPORTUNITIES Glass and Ceramics Industry in India GLass Global Glass Industry Glass is an inorganic product that is typically produced by 6% melting a mixture of silica (sand, 75 per cent), soda (around 15 per cent) and calcium compound (lime, 10 per cent) 16% with the desired metallic oxides that serve as colouring agents. The glass industry covers products such as flat glass 45% (including sheet glass, float glass, figured and wired glass, safety glass and mirror), glass hollow wares and containers, vacuum flasks, laboratory glassware and fibre glass. Glass products are used widely in households, construction, 33% laboratories and consumer items such as bangles, beads, pearls, etc. n Container Glass n Specialty Glass n Flat Glass n Fibre Glass THE GLass INDustrY Consists OF Four segments glass, rolled glass, cast glass and other flat glasses which are used mainly for architectural and automotive applications. Container Glass The global market for flat glass was estimated at 41 million tonnes in 2005, with a value of US$ 19 billion at the This is the largest segment in the glass sector and primary manufacturers’ level. Out of the total production, comprises of glass packaging for drinks, food, perfumes 70 per cent was consumed in windows for buildings, 10 and pharmaceuticals. per cent in glazing products for automotive applications and 20 per cent was used in furniture and other Specialty Glass interior applications. -
What Is Toughened Glass
“Toughened or tempered glass is a type of safety glass processed by controlled thermal or chemical treatments to increase its strength compared with normal glass. Tempering creates imbalanced internal stresses which cause the glass, when broken, to crumble into small granular chunks instead of splintering into jagged shards. The granular chunks are less likely to cause injury. As a result of its safety and strength, tempered glass is used in a variety of demanding applications, including passenger vehicle windows, shower doors, architectural glass doors and tables, refrigerator trays, as a component of bulletproof glass, for diving masks, and various types of plates and cookware. Toughened glass is physically and thermally stronger than regular glass. The greater contraction of the inner layer during manufacturing induces compressive stresses in the surface of the glass balanced by tensile stresses in the body of the glass. For glass to be considered toughened, this compressive stress on the surface of the glass should be a minimum of 69 MPa. For it to be considered safety glass, the surface compressive stress should exceed 100 MPa. The greater the surface stress, the smaller the glass particles will be when broken. It is this compressive stress that gives the toughened glass increased strength. This is because any surface flaws tend to be pressed closed by the retained compressive forces, while the core layer remains relatively free of the defects which could cause a crack to begin. Any cutting or grinding must be done prior to tempering. Cutting, grinding, sharp impacts and sometimes even scratches after tempering will cause the glass to fracture. -
Technical Glasses
Technical Glasses Physical and Technical Properties 2 SCHOTT is an international technology group with 130 years of ex perience in the areas of specialty glasses and materials and advanced technologies. With our highquality products and intelligent solutions, we contribute to our customers’ success and make SCHOTT part of everyone’s life. For 130 years, SCHOTT has been shaping the future of glass technol ogy. The Otto Schott Research Center in Mainz is one of the world’s leading glass research institutions. With our development center in Duryea, Pennsylvania (USA), and technical support centers in Asia, North America and Europe, we are present in close proximity to our customers around the globe. 3 Foreword Apart from its application in optics, glass as a technical ma SCHOTT Technical Glasses offers pertinent information in terial has exerted a formative influence on the development concise form. It contains general information for the deter of important technological fields such as chemistry, pharma mination and evaluation of important glass properties and ceutics, automotive, optics, optoelectronics and information also informs about specific chemical and physical character technology. Traditional areas of technical application for istics and possible applications of the commercial technical glass, such as laboratory apparatuses, flat panel displays and glasses produced by SCHOTT. With this brochure, we hope light sources with their various requirements on chemical to assist scientists, engineers, and designers in making the physical properties, have led to the development of a great appropriate choice and make optimum use of SCHOTT variety of special glass types. Through new fields of appli products. cation, particularly in optoelectronics, this variety of glass types and their modes of application have been continually Users should keep in mind that the curves or sets of curves enhanced, and new forming processes have been devel shown in the diagrams are not based on precision measure oped. -
High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof, -
Mechanical Properties and Robustness Evaluation of Glass Materials in Building
Mechanical properties and Robustness evaluation of glass materials in building Prof. Yiwang Bao State Key Lab. Of Green Building Materials China Building Materials Academy, 100024, Beijing Why glass? • Admit daylight • Provide external views • Achieve feeling of spaciousness • Functionality: self-cleaning, solar-energy Photo-voltaic,….. • Create durable weatherproof building envelope • New structural materials Structural glass application All-glass building 深圳三鑫公司所建的结构玻璃建筑 Structural/functional Combination BIPV glass components • applications 日本Sanyo太阳光电公司 德国柏林中央车站 BIPV glass components • Applications Beijing South station Energy saving building in Qinghua Univ. Dangerous glass from high building Shanghai daily 2nd Aug. 2006:A glass curtain wall fall down from 36th floor of Shanghai Jingjiang shopping center. Debris and splinters covers 40 square meter. No body injured Spontaneous breakage of glass curtain wall Glass rain glass: typical brittle material Brittle feature: no plastic deformation, low critical strain, high crack growth speed, stress concentration strong Stress Brittle breakage Perfectly elastic Strain Comparison of the deformation of metal and glass Three modes of failure of building glass 1. Spontaneous breakage (tempered glass) 2. Fracture due to strength degradation 3. Fall dawn of whole glass due to loosed support or sealant. Annealed glass • Breaks in to large dagger like shards • Sharp edges • Dangerous to fall through • Danger if falls This kind of glass is not safe building material Safety glass: laminated glass; tempered -
Lichtspiele the Play of Light Lassen Sie Licht Leuchten
Lichtspiele The play of light Lassen Sie Licht leuchten... Let there be light... Irlbacher Glas bringt Licht in allen öffentlichen und privaten Lebensbereichen zum Leuchten. Unsere Sicherheitsstandards entsprechen höchsten Anforderungen, unsere Produkte höchsten Qualitätsansprüchen. In enger Zusammenarbeit mit Designern, Kunden und Konstrukteuren entwickeln wir unsere Produktpalette ständig weiter. Fordern Sie uns – mit Ihren Ideen und Vorstellungen! Gläser für Ihre Leuchten finden Sie bei uns für unterschiedlichste Anwendungsgebiete. Irlbacher glass helps lighting up all sorts of public and private areas of life. Our safety standards meet the highest requirements and our products the highest quality standards. We are working continuously on developing our product palette in close cooperation with designers, design engineers and customers. Put us to the test – with your ideas and concepts! We provide glass for your lighting systems in a wide range of applications. ... im Außenraum ... ... outside ... 1 2 3 4 5 6 7 8 10 9 11 12 1 IMPAstep® Stufenglas, 5 IMPAstep® mit keramischem Siebdruck 10 IMPAstep®, Lichtleisten für LED Belastungsfähigkeit bis 5000 kg IMPAstep® with ceramic screen print IMPAstep®, LED light strips IMPAstep® stepped glass, 6 Glasquader, UV-verklebt 12 IMPAstep® mit Siebdruck zur Lichtstreuung load capacity up to 5000 kg Glass cuboids, UV-bonded IMPAstep® with screen print for light scattering 2 IMPAstep® mit Verlaufsdruck 7 Lichtleiter aus IMPAdur® 13 IMPAstep® mit Lichtlenkung durch Rillenstruktur IMPAstep® with fade out print IMPAdur® light guides IMPAstep® with corrugated light guiding structure 3 Vorsatzscheibe für 8 IMPAstep® mit Piktogramm Mastaufsatzleuchten IMPAstep® with pictogram Panels for mast-mounted luminaires 9 Keramisch bedruckte 4 Baugruppe für LED-Leuchten LED-Abdeckgläser Module for LED lamps LED cover glasses, ceramically printed .. -
Where Safety Meets Style™
® ® Where Safety ™ Meets Style www.GatewaySafety.com Table of Contents Founded in 1944, Gateway Safety has been designing and manufacturing high-quality personal Eye Protection . .3 protection equipment for more than sixty years. In an industry that’s filled with competition, many people have come to view safety products – such as safety glasses and hard hats – as commodities. Gateway Safety Glasses . .4-11 Safety does not subscribe to this point of view. Visitor Spectacles . .12 Bifocal & OTG Safety Glasses . 13 Unlike many of our competitors, Gateway Safety Eyewear Accessories . .14-15 invests significant time and resources in the design and development of our industrial safety products. Impact & Splash Goggles . .16-17 Rather than simply copying the Welding Eyewear . .18-19 designs of competitors, Gateway Face Protection . .20-21 Safety works very hard to develop Head Protection . .22-23 superior safety products that look better, fit better, and achieve Hearing Protection . .24-25 better compliance. Respiratory Protection . .26-27 Workplace Security . .28 This approach is a lot harder and takes a lot longer. However, the results are definitely worth it. And, clearly, the rest of the industry is taking notice. Over the past few years, Gateway Safety has received Emergency Eyewash Stations . 29 several awards and obtained several patents for the designs of our newest safety products. Product Customization . .30 Product Imprinting . .30 At the same time, while many of our competitors face skyrocketing overhead Private Label Products . .30 costs and bloated marketing budgets – which you pay for – Gateway Safety runs a lean operation. We work very hard to create as many operating Marketing Tools . -
CAN/CGSB 12.1 Safety Glazing
GANA Thirsty Thursday Webinar 1/17/2018 CAN/CGSB 12.1 Safety Glazing 2017 version summary update [email protected] GANA Thirsty Thursday January 18, 2018 Definition of Safety Glazing . Glazing material so constructed, treated, or combined with other materials that, if broken by human contact, the likelihood of cutting or piercing injuries that might result from such contact is reduced. NOT fire, fall-out, or an assessment of strength . CAN/CGSB 12.1 (and ANSI Z97.1) are the inspiration of “Safety Glazing” standards for the world. [email protected] GANA Thirsty Thursday January 18, 2018 ©Eastman Chemical Company No Re‐Use/Reproduction without written authorization from author. [email protected] 1 GANA Thirsty Thursday Webinar 1/17/2018 Background . Injuries from glass doors . ANSI Z97.1 – 1966 (voluntary) . 1970’s (Canada and USA) • safety glazing regulations • mandating use • primarily doors https://www.youtube.com/watch?v=IzHZDfp9Dl0 [email protected] GANA Thirsty Thursday January 18, 2018 Previous CGSB 12.1 Updates . Original publication CAN-2-M2-12.1-76 • Published 10.01.1975 . Several revisions yield CAN/CGSB – 12.1-M90 • Reasonably harmonized with ANSI Z97.1-1984 . Glass Types (laminated & tempered) . Categories (457 mm & 1219 mm impact) . Boil test for laminated . Centre punch test for tempered . Updates halted 1990 - 2014 [email protected] GANA Thirsty Thursday January 18, 2018 ©Eastman Chemical Company No Re‐Use/Reproduction without written authorization from author. [email protected] 2 GANA Thirsty Thursday Webinar 1/17/2018 PROMPTING CHANGE . Several law suits involving monolithic wired glass . Interests felt standards updates were needed (Canadian Code Center @ NRC) . -
Aerogel-Based Thermal Superinsulation: an Overview
J Sol-Gel Sci Technol (2012) 63:315–339 DOI 10.1007/s10971-012-2792-9 ORIGINAL PAPER Aerogel-based thermal superinsulation: an overview Matthias Koebel • Arnaud Rigacci • Patrick Achard Received: 7 March 2012 / Accepted: 27 April 2012 / Published online: 15 May 2012 Ó Springer Science+Business Media, LLC 2012 Abstract This review is focused on describing the inti- 1 Global need for superinsulation solutions mate link which exists between aerogels and thermal superinsulation. For long, this applied field has been con- 1.1 Why superinsulation? sidered as the most promising potential market for these nanomaterials. Today, there are several indicators suggest- Ever since the first global oil crisis in the seventies, the ing that this old vision is likely to become reality in the near scarcity of fossil fuels, which is the number one resource future. Based on recent developments in the field, we are for our chemical industry and energy carrier, has under- confident that aerogels still offer the greatest potential for lined the dependence of modern society on cheap energy non-evacuated superinsulation systems and consequently and resources [1]. Over short or long term, that very fact is must be considered as an amazing opportunity for sustain- forcing humanity to rethink global energy strategies and able development. The practical realization of such products consequently take appropriate measures. In addition to a however is time-consuming and a significant amount of limited supply of carbon based fuels worldwide, the effect R&D activities are still necessary to yield improved aerogel- of the carbon footprint i.e. the influence of a rising carbon based insulation products for mass markets. -
Fusing Fusing
® Artist Robert Wiener FusingFusing ToolsTools && AccessoriesAccessories ProductProduct CatalogCatalog www.dlartglass.com © 2019 D&L Art Glass Supply © 2019 D&L Art Glass Artist Nancy Bonig 303.449.8737 • 800.525.0940 Table of Contents About the Artwork Cover - Artist: Robert Wiener, DC Art Glass Series: Colorbar Murrine Series Title: Summer Salsa Size: 6" square (approx.) Website: www.dcartglass.com Photographer: Pete Duvall Table of Contents- Alice Benvie Gebhart Title: Distant Fog Size: 6 x 8" Website: www.alicegebhart.com Kilns ..........................................................................1-16 Tabletop Kilns .......................................................................................................... 1–3 120 Volt Kilns ............................................................................................................1-5 240 Volt Kilns ........................................................................................................ 6-12 Kiln Controllers at a Glance .....................................................................................13 Kiln Shelves .......................................................................................................... 14–15 Kiln Furniture and Accessories ................................................................................16 Kiln Working Supplies ....................................... 17-20 Primers & Shelf Paper ...............................................................................................17 Fiber Products & Release