Graph Databases Leverage Graph Databases to Succeed with Connected Data by Noel Yuhanna October 6, 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects
Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects Philipp Seifer Johannes Härtel Martin Leinberger University of Koblenz-Landau University of Koblenz-Landau University of Koblenz-Landau Software Languages Team Software Languages Team Institute WeST Koblenz, Germany Koblenz, Germany Koblenz, Germany [email protected] [email protected] [email protected] Ralf Lämmel Steffen Staab University of Koblenz-Landau University of Koblenz-Landau Software Languages Team Koblenz, Germany Koblenz, Germany University of Southampton [email protected] Southampton, United Kingdom [email protected] Abstract including project and domain specific ones. Common applica- Graph data models are interesting in various domains, in tion domains are management systems and data visualization part because of the intuitiveness and flexibility they offer tools. compared to relational models. Specialized query languages, CCS Concepts • General and reference → Empirical such as Cypher for property graphs or SPARQL for RDF, studies; • Information systems → Query languages; • facilitate their use. In this paper, we present an empirical Software and its engineering → Software libraries and study on the usage of graph-based query languages in open- repositories. source Java projects on GitHub. We investigate the usage of SPARQL, Cypher, Gremlin and GraphQL in terms of popular- Keywords Empirical Study, GitHub, Graphs, Query Lan- ity and their development over time. We select repositories guages, SPARQL, Cypher, Gremlin, GraphQL based on dependencies related to these technologies and ACM Reference Format: employ various popularity and source-code based filters and Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, ranking features for a targeted selection of projects. -
Arangodb Is Hailed As a Native Multi-Model Database by Its Developers
ArangoDB i ArangoDB About the Tutorial Apparently, the world is becoming more and more connected. And at some point in the very near future, your kitchen bar may well be able to recommend your favorite brands of whiskey! This recommended information may come from retailers, or equally likely it can be suggested from friends on Social Networks; whatever it is, you will be able to see the benefits of using graph databases, if you like the recommendations. This tutorial explains the various aspects of ArangoDB which is a major contender in the landscape of graph databases. Starting with the basics of ArangoDB which focuses on the installation and basic concepts of ArangoDB, it gradually moves on to advanced topics such as CRUD operations and AQL. The last few chapters in this tutorial will help you understand how to deploy ArangoDB as a single instance and/or using Docker. Audience This tutorial is meant for those who are interested in learning ArangoDB as a Multimodel Database. Graph databases are spreading like wildfire across the industry and are making an impact on the development of new generation applications. So anyone who is interested in learning different aspects of ArangoDB, should go through this tutorial. Prerequisites Before proceeding with this tutorial, you should have the basic knowledge of Database, SQL, Graph Theory, and JavaScript. Copyright & Disclaimer Copyright 2018 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. -
Storing Metagraph Model in Relational, Document- Oriented, and Graph Databases
Storing Metagraph Model in Relational, Document- Oriented, and Graph Databases © Valeriy M. Chernenkiy © Yuriy E. Gapanyuk © Yuriy T. Kaganov © Ivan V. Dunin © Maxim A. Lyaskovsky © Vadim S. Larionov Bauman Moscow State Technical University, Moscow, Russia [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. This paper proposes an approach for metagraph model storage in databases with different data models. The formal definition of the metagraph data model is given. The approaches for mapping the metagraph model to the flat graph, document-oriented, and relational data models are proposed. The limitations of the RDF model in comparison with the metagraph model are considered. It is shown that the metagraph model addresses RDF limitations in a natural way without emergence loss. The experiments result for storing the metagraph model in different databases are given. Keywords: metagraph, metavertex, flat graph, graph database, document-oriented database, relational database. adapted for information systems description by the 1 Introduction present authors [2]. According to [2]: = , , , At present, on the one hand, the domains are becoming where – metagraph; – set of metagraph more and more complex. Therefore, models based on vertices; – set of〈 metagraph metavertices; 〉 – complex graphs are increasingly used in various fields of set of metagraph edges. science from mathematics and computer science to A metagraph vertex is described by the set of biology and sociology. attributes: = { }, , where – metagraph On the other hand, there are currently only graph vertex; – attribute. databases based on flat graph or hypergraph models that A metagraph edge is described∈ by the set of attributes, are not capable enough of being suitable repositories for the source and destination vertices and edge direction complex relations in the domains. -
Arangodb Cookbook
Table of Contents Introduction 1.1 Modelling Document Inheritance 1.2 Accessing Shapes Data 1.3 AQL 1.4 Using Joins in AQL 1.4.1 Using Dynamic Attribute Names 1.4.2 Creating Test-data using AQL 1.4.3 Diffing Documents 1.4.4 Avoiding Parameter Injection 1.4.5 Multiline Query Strings 1.4.6 Migrating named graph functions to 3.0 1.4.7 Migrating anonymous graph functions to 3.0 1.4.8 Migrating graph measurements to 3.0 1.4.9 Graph 1.5 Fulldepth Graph-Traversal 1.5.1 Using a custom Visitor 1.5.2 Example AQL Queries for Graphs 1.5.3 Use Cases / Examples 1.6 Crawling Github with Promises 1.6.1 Using ArangoDB with Sails.js 1.6.2 Populating a Textbox 1.6.3 Exporting Data 1.6.4 Accessing base documents with Java 1.6.5 Add XML data to ArangoDB with Java 1.6.6 Administration 1.7 Using Authentication 1.7.1 Importing Data 1.7.2 Replicating Data 1.7.3 XCopy Install Windows 1.7.4 Silent NSIS on Windows 1.7.5 Migrating 2.8 to 3.0 1.7.6 Show grants function 1.7.7 Compiling / Build 1.8 Compile on Debian 1.8.1 Compile on Windows 1.8.2 OpenSSL 1.8.3 Running Custom Build 1.8.4 Recompiling jemalloc 1.8.4.1 Cloud, DCOS and Docker 1.9 Running on AWS 1.9.1 Update on AWS 1.9.2 1 Running on Azure 1.9.3 Docker ArangoDB 1.9.4 Docker with NodeJS App 1.9.5 In the GiantSwarm 1.9.6 ArangoDB in Mesos 1.9.7 DC/OS: Full example 1.9.8 Monitoring 1.10 Collectd - Replication Slaves 1.10.1 Collectd - Network usage 1.10.2 Collectd - more Metrics 1.10.3 Collectd - Monitoring Foxx 1.10.4 2 Introduction Cookbook This cookbook is filled with recipes to help you understand the multi-model database ArangoDB better and to help you with specific problems. -
Multi-Model Databases: a New Journey to Handle the Variety of Data
0 Multi-model Databases: A New Journey to Handle the Variety of Data JIAHENG LU, Department of Computer Science, University of Helsinki IRENA HOLUBOVA´ , Department of Software Engineering, Charles University, Prague The variety of data is one of the most challenging issues for the research and practice in data management systems. The data are naturally organized in different formats and models, including structured data, semi- structured data and unstructured data. In this survey, we introduce the area of multi-model DBMSs which build a single database platform to manage multi-model data. Even though multi-model databases are a newly emerging area, in recent years we have witnessed many database systems to embrace this category. We provide a general classification and multi-dimensional comparisons for the most popular multi-model databases. This comprehensive introduction on existing approaches and open problems, from the technique and application perspective, make this survey useful for motivating new multi-model database approaches, as well as serving as a technical reference for developing multi-model database applications. CCS Concepts: Information systems ! Database design and models; Data model extensions; Semi- structured data;r Database query processing; Query languages for non-relational engines; Extraction, trans- formation and loading; Object-relational mapping facilities; Additional Key Words and Phrases: Big Data management, multi-model databases, NoSQL database man- agement systems. ACM Reference Format: Jiaheng Lu and Irena Holubova,´ 2019. Multi-model Databases: A New Journey to Handle the Variety of Data. ACM CSUR 0, 0, Article 0 ( 2019), 38 pages. DOI: http://dx.doi.org/10.1145/0000000.0000000 1. -
Accommodating Data Variety by a Multimodel Star Schema Sandro Bimonte, Yassine Hifdi, Mohammed Maliari, Patrick Marcel, Stefano Rizzi
To Each His Own: Accommodating Data Variety by a Multimodel Star Schema Sandro Bimonte, Yassine Hifdi, Mohammed Maliari, Patrick Marcel, Stefano Rizzi To cite this version: Sandro Bimonte, Yassine Hifdi, Mohammed Maliari, Patrick Marcel, Stefano Rizzi. To Each His Own: Accommodating Data Variety by a Multimodel Star Schema. Proceedings of the 22nd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data co-located with EDBT/ICDT 2020 Joint Conference (EDBT/ICDT 2020), Mar 2020, Copenhagen, Denmark. hal-03009808 HAL Id: hal-03009808 https://hal.archives-ouvertes.fr/hal-03009808 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. To Each His Own: Accommodating Data Variety by a Multimodel Star Schema Sandro Bimonte Yassine Hifdi Mohammed Maliari University Clermont, TSCF, INRAE LIFAT Laboratory, University Tours ENSA Aubiere, France Blois, France Tangier, Maroc [email protected] [email protected] [email protected] Patrick Marcel Stefano Rizzi LIFAT Laboratory, University Tours DISI, University of Bologna Blois, France Bologna, Italy [email protected] [email protected] ABSTRACT for the right data type is essential to grant good storage and anal- Recent approaches adopt multimodel databases (MMDBs) to ysis performance. -
Arangodb Python Driver Documentation Release 0.1A
ArangoDB Python Driver Documentation Release 0.1a Max Klymyshyn Sep 27, 2017 Contents 1 Features support 1 2 Getting started 3 2.1 Installation................................................3 2.2 Usage example..............................................3 3 Contents 5 3.1 Collections................................................5 3.2 Documents................................................8 3.3 AQL Queries............................................... 11 3.4 Indexes.................................................. 14 3.5 Edges................................................... 15 3.6 Database................................................. 17 3.7 Exceptions................................................ 18 3.8 Glossary................................................. 18 3.9 Guidelines................................................ 19 4 Arango versions, Platforms and Python versions 21 5 Indices and tables 23 Python Module Index 25 i ii CHAPTER 1 Features support Driver for Python is not entirely completed. It supports Connections to ArangoDB with custom options, Collections, Documents, Indexes Cursors and partially Edges. Presentation about Graph Databases and Python with real-world examples how to work with arango-python. ArangoDB is an open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient sql-like query language or JavaScript/Ruby ex- tensions. More details about ArangoDB on official website. Some blog posts about this driver. 1 ArangoDB Python -
Cloud Storage
Cloud Storage Big Data and Cloud Computing (CC4053) Eduardo R. B. Marques, DCC/FCUP 1 / 40 Cloud storage We provide an overview of the main storage models used with cloud computing, and example cloud service offerings including: File systems Object stores (buckets) Databases: relational (SQL-based) and other kinds (“NoSQL”) Data warehousing Reference → most of the topics in these slides are also covered in chapters 2 and 3 of Cloud Computing for Science and Engineering. 2 / 40 Local file systems Characteristics: hierarchical organisation of files within directories uses an entire disk or a disk partition with fixed capacity data is read/written by a single host programmatic access by standard APIs (e.g., the POSIX interface) Advantage → most programs are designed to work with files, and use the file system hierarchy (directories) as a natural means to organize information - files/directories have no associated “data schema” though. Disavantadges → Shared access by multiple hosts is not possible, and the volume of data is bound by the file system capacity. Distributed file systems, discussed next, can handle shared access and mitigate volume restrictions. 3 / 40 Local file systems (cont.) Example: configuration of a VM book disk in Compute Engine 4 / 40 Network attached storage Characteristics: Files are physically stored in a server host. The file system can be attached over the network by other hosts, and accessed transparently (i.e. the same way as local file systems). Data consistency is managed by a network protocol such as NFS (Networked File System) and SMB (Server Message Block). Advantages → data sharing by multiple hosts, and typically higher storage capacity (installed at server hosts) Example cloud services → NFS: Amazon EFS, Google File Store, Azure Files (Azure Files also supports SMB). -
Advanced Databases. Project. by Aleksei Karetnikov
A report on INFO-H-415: Advanced Databases. Project. By Aleksei Karetnikov (000455065) Content INTRODUCTION ...................................................................................................................... 3 GRAPH DATABASE .................................................................................................................. 4 What is it? .................................................................................................................................................. 4 Differences between other technologies ................................................................................................... 4 Query languages ......................................................................................................................................... 5 ARANGODB ............................................................................................................................. 7 Features .................................................................................................................................................. 7 Benefits with same DB ............................................................................................................................... 9 DB architecture .......................................................................................................................................... 9 Storage engines ....................................................................................................................................... -
Execution Time Analysis of Electrical Network Tracing in Relational and Graph Databases
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2019 Execution Time Analysis of Electrical Network Tracing in Relational and Graph Databases FELIX DE SILVA KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Execution Time Analysis of Electrical Network Tracing in Relational and Graph Databases FELIX DE SILVA Master in Computer Science Date: March 16, 2019 Supervisor: Mika Cohen Examiner: Mads Dam School of Electrical Engineering and Computer Science iii Abstract In today’s society, we handle a lot of connected data. Examples are companies like Facebook and Amazon, that handle connected data in different ways. Geographic Information Systems and Network Informa- tion Systems handle connected data in the form of networks or graphs that can represent anything from an electrical network to a product network. When it comes to connected data, the most commonly used database technology is relational databases. However, with a lot of new databases emerging, there may be better alternatives for connected data that can provide higher performance. In this study we look at the Oracle relational database and the Neo4j graph database and study how both databases traverse an electrical network. The findings indicate that the Neo4j graph database outper- forms the Oracle relational database regarding execution time of search queries. iv Sammanfattning I dagens samhälle hanterar vi mycket kopplad data. Exempel är företag som Facebook och Amazon, som hanterar kopplad data på olika sätt. Geografiska informationssystem och nätverksinformationssystem han- terar kopplad data i form av nätverk eller grafer som kan representera allt från elnät till ett produktnätverk. -
Comparing Relational Databases to a Native Multi-Model Database System
Non è possibile visualizzare l'immagine. Consiglio Nazionale delle Ricerche Istituto di Calcolo e Reti ad Alte Prestazioni Comparing Relational Databases to a Native Multi-Model Database System A. Messina Rapporto Tecnico N.: RT-ICAR-PA-18-01 Gennaio 2018 Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) – Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it – Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it – Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it Non è possibile visualizzare l'immagine. Consiglio Nazionale delle Ricerche Istituto di Calcolo e Reti ad Alte Prestazioni Comparing Relational Databases to a Native Multi-Model Database System A. Messina1 Rapporto Tecnico N.: RT-ICAR-PA-18-01 Gennaio 2018 1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Via Ugo La Malfa n. 153, 90146 Palermo. I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione definitiva in altra sede. Index 1 INTRODUCTION ...................................................................................................... 5 2 DATABASE CONCEPTS ......................................................................................... -
Python-Arango
python-arango May 20, 2021 Contents 1 Requirements 3 2 Installation 5 3 Contents 7 Python Module Index 249 Index 251 i ii python-arango Welcome to the documentation for python-arango, a Python driver for ArangoDB. Contents 1 python-arango 2 Contents CHAPTER 1 Requirements • ArangoDB version 3.7+ • Python version 3.6+ 3 python-arango 4 Chapter 1. Requirements CHAPTER 2 Installation ~$ pip install python-arango 5 python-arango 6 Chapter 2. Installation CHAPTER 3 Contents 3.1 Getting Started Here is an example showing how python-arango client can be used: from arango import ArangoClient # Initialize the ArangoDB client. client= ArangoClient(hosts='http://localhost:8529') # Connect to "_system" database as root user. # This returns an API wrapper for "_system" database. sys_db= client.db('_system', username='root', password='passwd') # Create a new database named "test" if it does not exist. if not sys_db.has_database('test'): sys_db.create_database('test') # Connect to "test" database as root user. # This returns an API wrapper for "test" database. db= client.db('test', username='root', password='passwd') # Create a new collection named "students" if it does not exist. # This returns an API wrapper for "students" collection. if db.has_collection('students'): students= db.collection('students') else: students= db.create_collection('students') # Add a hash index to the collection. students.add_hash_index(fields=['name'], unique=False) # Truncate the collection. students.truncate() (continues on next page) 7 python-arango (continued from previous page) # Insert new documents into the collection. students.insert({'name':'jane','age': 19}) students.insert({'name':'josh','age': 18}) students.insert({'name':'jake','age': 21}) # Execute an AQL query.