Paracetamol and Phenacetin

Total Page:16

File Type:pdf, Size:1020Kb

Paracetamol and Phenacetin Drugs 32 (Suppl. 4): 46-59 (1986) OOI2-6667/86/040<MJ046/$7.00/0 © ADIS Press Limited All rights reserved. Paracetamol and Phenacetin Stephen P. Clissold ADIS Drug Information Services, Auckland Summary Since their synthesis in the late l800s paracetamol (acetaminophen) and phenacetin have followed divergent pathways with regard to their popularity as mild analgesic/anti­ pyretic drugs. Initially, paracetamol was discarded in favour of phenacetin because the latter drug was supposedly less toxic. Today the opposite is true. and paracetamol. along with aspirin. has become one ofthe two most popular 'over-the-counter' non-narcotic anal­ gesic agents. This marked increase in the wide approval attained by paracetamol has been accompanied by the virtual commercial demise of phenacetin because of its role, albeit somewhat circumstantial. in causing analgesic nephropathy. Both paracetamol and phenacetin are effective mild analgesics, suitable for treating mild to moderate pain. and their actions are broadly comparable with those of aspirin and related salicylates. although they do not appear to possess significant anti-inflam­ matory activity. Since a major portion of a dose of phenacetin is rapidly metabolised to paracetamol. it seems possible that phenacetin owes some of its therapeutic activity to its main metabolite. paracetamol. whereas its most troublesome side effect (methaemoglo­ binaemia) is due to another metabolite. p-phenetidine. The mechanism of action of para­ cetamol is poorly defined. although it has been speculated that it may selectively inhibit prostaglandin production in the central nervous system. which would account for its anal­ gesic/antipyretic properties. The lack of any significant influence on peripheral cyclo­ oxygenase would explain the absence of anti-inflammatory activity. At therapeutic doses paracetamol is well tolerated and produces fewer side effects than aspirin. The most frequently reported adverse effect associated with paracetamol is he­ patotoxicity. which occurs after acute overdosage (usually doses greater than 10 to 15g are needed) and. very rarely. during long term treatment with doses at the higher levels ofthe therapeutic range. Paracetamol damages the liver through the formation ofa highly reactive metabolite which is normally inactivated by conjugation with glutathione. Ov­ erdoses of paraceta mol exhaust glutathione stores. thus allowing the accumulation ofthis toxic metabolite which covalently binds with vital cell elements and can result in liver necrosis. Glutathione precursors (notably intravenous N-acetylcysteine) have proved re­ markably successful in treating paracetamol overdose, as long as treatment is initiated within 10 hours. Apart from pharmacokinetic drug interactions resulting from changes in gastric empty­ ing rate. there have been very few reports of clinically important drug-drug interactions involving paracetamol or phenacetin. The pre-eminent position of paracetamol and aspirin as the non-narcotic analgesic agents of choice for mild to moderate pain is being seriously challenged by 'newer' non­ steroidal anti-inflammatory drugs. Some of these newer agents have been found to have significantly superior analgesic activity and. in some cases. longer durations of action. Paracetamol and Phenacetin 47 Paracetamol (acetaminophen) and phenacetin persuasive arguments. However, the case for phen­ are both derivatives of acetanilide (for structural acetin is weakened by its apparent lack of any ther­ formulae see fig. I), an aniline-like compound apeutic advantages over paracetamol, the potential which, in the 1880s, was serendipitously found to haematological toxicity of its metabolites, and its possess antipyretic activity. Acetanilide was quickly propensity (unlike other non-narcotic analgesics) introduced into medical practice and it was shown to produce central psychotropic effects which may to have analgesic as well as antipyretic activity. contribute to its liability for abuse. However, it was soon found to have unacceptable toxic effects, the most alarming being cyanosis due 1. Pharmacodynamic Properties to methaemoglobinaemia, and this prompted the 1.1 Mechanism of Action search for less toxic derivatives of aniline. Phen­ acetin was introduced into clinical use in 1887 by The basic pharmacological mechanisms of ac­ von Mering (von Mering, 1893), who also evalu­ tion of paracetamol and phenacetin have not re­ ated the activity of a related compound N-acetyl­ ceived the scientific attention accorded to the sali­ p-aminophenol (acetaminophen, paracetamol). He cylates and, consequently, many explanations for discarded paracetamol in favour of phenacetin be­ their activity appear somewhat speculative. Both cause of the latter's supposedly better toxicity pro­ drugs have analgesic and antipyretic properties file (for an overview of the history and usage of which do not differ significantly from those of as- the aniline derivatives see Bowman and Rand, 1980; Flower et ai., 1980; Meredith and Goulding, 1980). Further studies in the 1940s demonstrated that paracetamol was the major metabolite of both phenacetin and acetanilide and, importantly, met­ haemoglobinaemia was caused by a different me­ Acetanilide tabolite of phenacetin, p-phenetidine (Brodie and Axelrod, 1949). Paracetamol has been freely avail­ able since the mid 1950s and it has steadily gained in popularity. In the United Kingdom paracetamol sales have exceeded those of aspirin since about 1978. Paracetamol has never been quite so popular in the United States, although this position is Paracetamol (acetaminophen) changing and it has recently been reported that one proprietary paracetamol product accounts for about 35% of the 'over-the-counter' analgesic market (see Black, 1984). The rise in popularity of paracetamol has been accompanied by the virtual commercial demise of phenacetin. The major reason for this has been the condemnation of phenacetin, on what now seems Phenacetin to be circumstantial evidence, as being the sole cause of analgesic nephropathy (see section 4.2.1) [see also Kincaid-Smith, this issue]. Protagonists for and against the decisions taken in many coun­ tries to limit the supply of phenacetin are abundant Fig. 1. Structural formulae of acetanilide, paracetamol and within scientific circles, and each 'side' has its own phenacetin. Paracetamol and Phenacetin 48 pirin. However, the 2 drugs lack the potent anti­ demonstrated that paracetamol relieved pain by inflammatory actions of aspirin. blocking impulse generation at bradykinin-sensi­ Why paracetamol is an effective analgesic but tive chemoreceptors which evoke pain - a peri­ only a weak anti-inflammatory agent has not been pheral mechanism. Clearly, further studies are nec­ satisfactorily established, although most recent ex­ essary to evaluate the relative influence of planations involve a selective inhibition of some peripheral and central mechanisms on the overall facet of prostaglandin biosynthesis (for reviews see analgesic properties of paracetamol and phenace­ Hower et aI., 1980; Jackson et aI., 1984; Meredith tin. and Goulding, 1980; Ramwell, 1981). Some evi­ At the present time the mechanism of action of dence suggests that paracetamol has a weak inhib­ paracetamol is poorly understood; it is possible that itory influence on peripheral prostaglandin biosyn­ unknown peripheral and/or central mechanisms thesis (which would account for its lack of may also be involved. substantial anti-inflammatory activity), but that it is a potent inhibitor of prostaglandin production 2. Pharmacokilletic Properties within the central nervous system (presumably ac­ counting for its analgesic and antipyretic proper­ Acetanilide, phenacetin and paracetamol are all ties). Why central nervous system cydo-oxygenase derivatives of aniline, in whose structure reside the is more sensitive to paracetamol (if this is its main intrinsic antipyretic and analgesic properties of this mode of action) than peripheral cydo-oxygenase, group. Paracetamol is the major metabolite of both has not been convincingly explained and further acetanilide and phenacetin (see section 2.3) and the research is needed to clarify the mechanisms in­ pharmacodynamic actions of this compound prob­ volved. The analgesic and antipyretic effects of ably account for much of the therapeutic action of phenacetin are generally attributed to its major these drugs. Consequently, most attention in this metabolite, paracetamol; however, there is evi­ section will be focused on the pharmacokinetic dence that phenacetin itself has inherent pharma­ characteristics of paracetamol, a moderately water­ codynamic activity. and lipid-soluble weak organic acid (pKa 9.5) which is largely un-ionised over the physiological range 1.2 Analgesic Effects of pH. Like the salicylates, paracetamol and phenace­ 2.1 Absorption tin possess analgesic activity which is effective against pain of mild to moderate severity. How­ Paracetamol is invariably taken orally and is ever, unlike the salicylates, which act mainly peri­ only minimally absorbed from the stomach. Ab­ pherally against pain associated with inflammation sorption is by passive diffusion with first-order ki­ (see Oissold, this issue, p. 8), both paracetamol and netics and occurs mainly in the small intestine; the phenacetin have few or no antiinflammatory prop­ rate of absorption therefore depends on the gastric erties and apparently exert their analgesic effects emptying rate (for reviews see Forrest et aI., 1982; via central actions (Bowman and
Recommended publications
  • Nitrous Oxide in Emergency Medicine Í O’ Sullivan, J Benger
    214 ANALGESIA Emerg Med J: first published as 10.1136/emj.20.3.214 on 1 May 2003. Downloaded from Nitrous oxide in emergency medicine Í O’ Sullivan, J Benger ............................................................................................................................. Emerg Med J 2003;20:214–217 Safe and predictable analgesia is required for the identify these zones as there is considerable vari- potentially painful or uncomfortable procedures often ation between people. He also emphasised the importance of the patient’s pre-existing beliefs. If undertaken in an emergency department. The volunteers expect to fall asleep while inhaling characteristics of an ideal analgesic agent are safety, 30% N2O then a high proportion do so. An appro- predictability, non-invasive delivery, freedom from side priate physical and psychological environment increases the actions of N2O and may allow lower effects, simplicity of use, and a rapid onset and offset. doses to be more effective. Unlike many other Newer approaches have threatened the widespread use anaesthetic agents, N2O exhibits an acute toler- of nitrous oxide, but despite its long history this simple ance effect, whereby its potency is greater at induction than after a period of “accommoda- gas still has much to offer. tion”. .......................................................................... MECHANISM OF ACTION “I am sure the air in heaven must be this Some writers have suggested that N2O, like wonder-working gas of delight”. volatile anaesthetics, causes non-specific central nervous system depression. Others, such as 4 Robert Southey, Poet (1774 to 1843) Gillman, propose that N2O acts specifically by interacting with the endogenous opioid system. HISTORY N2O is known to act preferentially on areas of the Nitrous oxide (N2O) is the oldest known anaes- brain and spinal cord that are rich in morphine thetic agent.
    [Show full text]
  • Analgesic Indications: Developing Drug and Biological Products
    Guidance for Industry Analgesic Indications: Developing Drug and Biological Products DRAFT GUIDANCE This guidance document is being distributed for comment purposes only. Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. For questions regarding this draft document contact Sharon Hertz at 301-796-2280. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) February 2014 Clinical/Medical 5150dft.doc 01/15/14 Guidance for Industry Analgesic Indications: Developing Drug and Biological Products Additional copies available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 51, rm. 2201 Silver Spring, MD 20993-0002 Tel: 301-796-3400; Fax: 301-847-8714; E-mail: [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) February
    [Show full text]
  • Extraction and Evaporation: Experiment 1 Separating the Components of a Mixture1 Week 1
    Organic Chemistry I Laboratory Extraction and Evaporation: Experiment 1 Separating the Components of a Mixture1 Week 1 Background Reading Zubrick, J. W. The Organic Chem Lab Survival Manual, 4th edition, Wiley & Sons, Inc., New York, 1997. Keeping a Notebook: Pg 12-24. Interpreting Handbooks: Pg 26-31, 34-44. Extraction and Washing: Pg 148-168. Background Senario One of the many places organic chemists are employed is in private laboratories associated with consulting firms. The purpose of these labs is generally to provide chemical analysis or synthesis of material for customers. The first few labs in CHM 220 will teach you the basic techniques needed to analyze and purify mixtures to determine the individual components. This first lab will involve determining the composition of a possible pharmaceutical preparation. Watchdog agencies exist which monitor the pharmaceuticals sold over the counter in the United States. These agencies will use private laboratory firms to analyze products suspected of violating enforced standards. For example, a new brand of analgesic may appear on drugstore shelves at a low price. The label indicates that the tablets were manufactured in the United States by a legitimate pharmaceutical company. However, the labels may reveal discrepancies and the appearance/quality of the tablets could lead an investigator to suspect that they might be counterfeit. Such knockoffs of a domestic product can be manufactured cheaply elsewhere and smuggled into the US, where they are sold for high profits. This laboratory exercise places you in the position of analyzing a suspected counterfeit analgesic preparation. The label on the suspected bottle lists the ingredients per tablet as aspirin (200 mg), acetaminophen (250 mg), and sucrose (50 mg).
    [Show full text]
  • Diclofenac Topical Patch Gel Solution Monograph
    Diclofenac Topical Patch, Gel and Solution National Drug Monograph March 2016 VHA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives The purpose of VA PBM Services drug monographs is to provide a focused drug review for making formulary decisions. Updates will be made when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current. FDA Approval Information Description/Mechanism of Action Diclofenac is the only nonsteroidal antiinflammatory drug (NSAID) approved in the U.S. for topical application. The mechanism of diclofenac is believed to be inhibition of prostaglandin synthesis, primarily by nonselectively inhibiting cyclooxygenase. The agents covered in this review are the four diclofenac topical products approved for analgesic purposes: Diclofenac epolamine / hydroxyethylpyrrolidine patch (DEHP) 1.3% approved in January 2007 Diclofenac sodium topical gel 1%, approved in October 2007 Diclofenac sodium topical solution 1.5% with dimethyl sulfoxide (DMSO, 45.5% w/w), approved in November 2009 Diclofenac sodium topical solution 2% with dimethyl sulfoxide (DMSO, 45.5% w/w), approved in January 2014 Indication(s) Under Review in this document (may include off Solution 1.5% Solution 2% label) Patch 1.3% Gel 1% (Drops) (MDP) Topical treatment Relief of the pain of Treatment of signs Treatment of the Also see Table 1 Product Descriptions of acute pain due osteoarthritis of joints and symptoms of pain of below. to minor strains, amenable to topical osteoarthritis of the osteoarthritis of sprains, and treatment, such as the knee(s) the knee(s) contusions knees and those of the hands.
    [Show full text]
  • Diclofenac Sodium Enteric-Coated Tablets) Tablets of 75 Mg Rx Only Prescribing Information
    ® Voltaren (diclofenac sodium enteric-coated tablets) Tablets of 75 mg Rx only Prescribing Information Cardiovascular Risk • NSAIDs may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk. (See WARNINGS.) • Voltaren® (diclofenac sodium enteric-coated tablets) is contraindicated for the treatment of perioperative pain in the setting of coronary artery bypass graft (CABG) surgery (see WARNINGS). Gastrointestinal Risk • NSAIDs cause an increased risk of serious gastrointestinal adverse events including inflammation, bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients are at greater risk for serious gastrointestinal events. (See WARNINGS.) DESCRIPTION Voltaren® (diclofenac sodium enteric-coated tablets) is a benzene-acetic acid derivative. Voltaren is available as delayed-release (enteric-coated) tablets of 75 mg (light pink) for oral administration. The chemical name is 2-[(2,6-dichlorophenyl)amino] benzeneacetic acid, monosodium salt. The molecular weight is 318.14. Its molecular formula is C14H10Cl2NNaO2, and it has the following structural formula The inactive ingredients in Voltaren include: hydroxypropyl methylcellulose, iron oxide, lactose, magnesium stearate, methacrylic acid copolymer, microcrystalline cellulose, polyethylene glycol, povidone, propylene glycol, sodium hydroxide, sodium starch glycolate, talc, titanium dioxide. CLINICAL PHARMACOLOGY Pharmacodynamics Voltaren® (diclofenac sodium enteric-coated tablets) is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, analgesic, and antipyretic activities in animal models. The mechanism of action of Voltaren, like that of other NSAIDs, is not completely understood but may be related to prostaglandin synthetase inhibition.
    [Show full text]
  • Use of Non-Opioid Analgesics As Adjuvants to Opioid Analgesia for Cancer Pain Management in an Inpatient Palliative Unit: Does T
    Support Care Cancer (2015) 23:695–703 DOI 10.1007/s00520-014-2415-9 ORIGINAL ARTICLE Use of non-opioid analgesics as adjuvants to opioid analgesia for cancer pain management in an inpatient palliative unit: does this improve pain control and reduce opioid requirements? Shivani Shinde & Pamela Gordon & Prashant Sharma & James Gross & Mellar P. Davis Received: 2 October 2013 /Accepted: 18 August 2014 /Published online: 29 August 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract morphine equivalent doses of the opioid in both groups (median Background Cancer pain is complex, and despite the intro- (min, max); 112 (58, 504) vs. 200 (30, 5,040)) at the time of duction of the WHO cancer pain ladder, few studies have discharge; 75–80 % of patients had improvement in pain scores looked at the prevalence of adjuvant medication use in an as measured by a two-point reduction in numerical rating scale inpatient palliative medicine unit. In this study, we evaluate (NRS). the use of adjuvant pain medications in patients admitted to an Discussion This study shows that adjuvant medications are inpatient palliative care unit and whether their use affects pain commonly used for treating pain in patients with cancer. More scores or opiate dosing. than half of study population were on two adjuvants or an Methods In this retrospective observational study, patients adjuvant plus NSAID along with an opioid. We did not admitted to the inpatient palliative care unit over a 3-month demonstrate any benefit in terms of improved pain scores or period with a diagnosis of cancer on opioid therapy were opioid doses with adjuvants, but this could reflect confound- selected.
    [Show full text]
  • ATC CODING for MEDICATION DATA SAS DATASET NAME: Meds1 8S PROTOCOL NAME: Meds1 8S Protocol.Don
    ATC CODING FOR MEDICATION DATA SAS DATASET NAME: meds1_8s PROTOCOL NAME: meds1_8s_protocol.don Medications were coded using the World Health Organization‟s Anatomical Therapeutic Chemical (ATC) classifications. Information about the ATC classification system can be found at http://www.whocc.no/atcddd/. Briefly, The numeric ATC codes assigned to a drug can be broken down into five parts. For example in the code N02BE01: The first character (N) represents the main anatomical group. In this example N = Nervous System. Characters two and three (02) represent the therapeutic subgroup. In this example N02 = Analgesics. Character four (B) represents the pharmacological subgroup. In this example N02B = Other analgesics and antipyretics. Character five (E) represents the chemical subgroup. In this example N02BE = Anilides. Characters six and seven (01) represent the chemical substance. In this example N02BE01 = Paracetamol (acetaminophen). If a medication consists of multiple compounds, all unique compounds were coded leaving up to four codes per medication in the coded database (variable names = atc_cod1,…,atc_cod4). There were a few exceptions including oral contraceptives, vitamins/supplements and other multi-compound medications not assigned to one code per compound due to the nature of the medication. Looking at the contraceptive example below, if we use the first two codes instead of one of the second two codes we lose the info about fixed or sequential doses and the fact that it is specifically an oral contraceptive: (1) G03AC03 LEVONORGESTREL
    [Show full text]
  • Paracetamol an Effective Analgesic, but Adding Codeine Gives Additional Benefit
    Evidence-Based Dentistry (2000) 2, 38 ã 2000 Evidence-Based Dentistry All rights reserved 1462-0049/00 $15.00 www.nature.com/ebd summary Paracetamol an effective analgesic, but adding codeine gives additional benefit Moore A, Collins S, Carroll D, McQuay HJ. Paracetamol with and without codeine in acute pain: a quantitative systematic review. Pain 1997; 77:193±201 Objective To assess the analgesia obtained from single oral doses of Paracetamol Number Patients with at least Risk ratio NNT paracetamol alone and with codeine. dose (mg) of trials 50% pain relief (95% CI) (95%CI) Paracetamol Placebo Data sources A search of the following databases, Medline 1966± Post 500 2 65/109 36/114 1.6 3.6 1996, Embase 1980±1996, Cochrane Library Issue 2, 1996, Oxford Pain (0.8±3.5) (2.5±6.5) Dental 600/650 10 134/338 66/339 1.5 4.4 Relief Database 1950±1994, reference lists and textbooks, using a (1.2±1.9) (3.7±7.5) detailed search strategy. 1000 7 158/430 33/284 2.6 4.0 Study selection Only full journal publication of double-blind studies (1.7±4.0) (3.2±5.2) with randomly allocated adult patients receiving postoperative oral Drug dose Number of Patients with at least Risk ratio NNT administration for treatment of moderate to severe pain baseline pain (mg) trials 50% pain relief (95% CI) (95%CI) (equates to >30mm on a visual analogue scale, VAS), using acceptable Paracetamol Paracetamol Placebo pain measures. + codeine + codeine 300 +30 5 69/246 17/196 3.0 (1.8±5.0) 5.3 (3.8±8.0) Results Thirty-one trials met the inclusion criteria of which 19 600/650 +60 13 219/415 88/432 2.6 (2.1±3.2) 3.1 (2.6±3.8) related to dental pain for paracetamol versus placebo, 19 trials for 1000+60 1 27/41 4/17 2.8 (1.2±6.8) 2.4 (1.5±5.7) paracetamol and codeine versus placebo (14 dental) and 13 for Drug dose (mg) Number Patients with at least Risk ratio NNT paracetamol and codeine versus paracetamol alone (10 dental).
    [Show full text]
  • A Study of the Analgesic Efficacy and Safety of Use of Paracetomol
    SUMMARIES analgesia A study of the analgesic efficacy and safety of use of paracetomol formulations after third molar surgery Pain control with paracetamol from a sustained release formulation and a standard release formulation after third molar surgery: a randomised controlled trial by P Coulthard, C M Hill, J W Frame, H Barry, B D Ridge, and T H Bacon Br Dent J 2001; 191: 319-324 Objective difference in time to re-medication between the treatment To compare the analgesic efficacy and safety of a sustained groups, the estimated time to re-medication was longer for release (SR) paracetamol formulation (Panadol Extend) with a patients treated with SR paracetamol (4 hr 5 min) compared standard immediate release (IR) formulation (Panadol) after with IR paracetamol (3 hr 10 min). The high rate of third molar surgery. re-medication observed is consistent with that reported for IR paracetamol using the post-operative dental pain model4,6. Design No difference was observed between the SR paracetamol and A multi-centre, double-blind, randomised clinical trial. IR paracetamol treatment groups in distribution, incidence or severity of adverse events. Methods Patients received either a single oral dose of SR paracetamol or Conclusions IR paracetamol for pain after the removal of at least one SR paracetamol and IR paracetamol are clinically and impacted third molar requiring bone removal under general statistically equivalent. While SR paracetamol and anaesthesia. Post-operative pain and pain relief assessments were IR paracetamol were similar in terms of both onset of analgesia undertaken at time intervals up to 8 hours. Global assessments and peak analgesic effect, SR paracetamol had a longer duration of effectiveness were made at 4 and 8 hours.
    [Show full text]
  • All-Cause Mortality in Patients with Long-Term Opioid Therapy Compared with Non-Opioid Analgesics for Chronic Non-Cancer Pain: A
    Häuser et al. BMC Medicine (2020) 18:162 https://doi.org/10.1186/s12916-020-01644-4 RESEARCH ARTICLE Open Access All-cause mortality in patients with long- term opioid therapy compared with non- opioid analgesics for chronic non-cancer pain: a database study Winfried Häuser1,2* , Tino Schubert3, Tobias Vogelmann3, Christoph Maier4, Mary-Ann Fitzcharles5 and Thomas Tölle6 Abstract Background: Hitherto only studies with selected populations have found an increased all-cause mortality of some selected opioids compared to selected non-opioids for chronic non-cancer pain (CNCP). We have examined the all- cause mortality for CNCP associated with all established opioids compared to non-opioid analgesic therapy (anticonvulsants, antidepressants, dipyrone, non-steroidal agents). Methods: The study used the InGef (Institute for Applied Health Research Berlin) database which is an anonymized healthcare claims database including 4,711,668 insured persons who were covered by 61 German statutory health insurances between 2013 and 2017.The health insurance companies are the owners of the database. All-cause mortality was determined from death certificates. Adjusted hazard ratios (HRs) including age, gender, comorbidity index, and propensity score as covariates and risk differences (RD) in incidence of death between patients with long-term opioid therapy (LTOT) and control-drug therapy were calculated. Results: The mean age of participants was 66 years; 55% were women. There were 554 deaths during 10,435 person-years for the LTOT patients, whereas there were 340 deaths during 11,342 person-years in the control group. The HR for all-cause mortality was 1.59 (95% CI, 1.38–1.82) with a risk difference of 148 excess deaths (95% CI 99– 198) per 10,000 person-years.
    [Show full text]
  • Pain Management in Patients with Substance-Use Disorders
    Pain Management in Patients with Substance-Use Disorders By Valerie Prince, Pharm.D., FAPhA, BCPS Reviewed by Beth A. Sproule, Pharm.D.; Jeffrey T. Sherer, Pharm.D., MPH, BCPS; and Patricia H. Powell, Pharm.D., BCPS Learning Objectives regarding drug interactions with illicit substances or prescribed pain medications. Finally, there are issues 1. Construct a therapeutic plan to overcome barri- ers to effective pain management in a patient with related to the comorbidities of the patient with addic- addiction. tion (e.g., psychiatric disorders or physical concerns 2. Distinguish high-risk patients from low-risk patients related to the addiction) that should influence product regarding use of opioids to manage pain. selection. 3. Design a treatment plan for the management of acute pain in a patient with addiction. Epidemiology 4. Design a pharmacotherapy plan for a patient with Pain is the second most common cause of work- coexisting addiction and chronic noncancer pain. place absenteeism. The prevalence of chronic pain may 5. Design a pain management plan that encompasses be much higher among patients with substance use dis- recommended nonpharmacologic components for orders than among the general population. In the 2006 a patient with a history of substance abuse. National Survey on Drug Use and Health, past-year alco- hol addiction or abuse occurred in 10.3% of men and 5.1% of women. In the same survey, 12.3% of men and Introduction 6.3% of women were reported as having a substance-use Pain, which is one of the most common reasons disorder (abuse or addiction) during the past year.
    [Show full text]
  • Quantitative Assessment of Population Variability in Hepatic Drug Metabolism Using a Perfused Three-Dimensional Human Liver Microphysiological System S
    Quantitative Assessment of Population Variability in Hepatic Drug Metabolism Using a Perfused Three- Dimensional Human Liver Microphysiological System The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tsamandouras, N., T. Kostrzewski, C. L. Stokes, L. G. Griffith, D. J. Hughes, and M. Cirit. “Quantitative Assessment of Population Variability in Hepatic Drug Metabolism Using a Perfused Three- Dimensional Human Liver Microphysiological System.” Journal of Pharmacology and Experimental Therapeutics 360, no. 1 (October 19, 2016): 95–105. As Published http://dx.doi.org/10.1124/JPET.116.237495 Publisher American Society for Pharmacology & Experimental Therapeutics (ASPET) Version Final published version Citable link http://hdl.handle.net/1721.1/117617 Terms of Use Creative Commons Attribution-NonCommercial 4.0 International Detailed Terms http://creativecommons.org/licenses/by-nc/4.0/ Downloaded from jpet.aspetjournals.org at ASPET Journals on August 30, 2018 95 105, January 2017 – and the associ- ” http://dx.doi.org/10.1124/jpet.116.237495 c clearance, as assessed in vitro, g metabolism in the context of a J Pharmacol Exp Ther 360:95 average individual, “ Several in vitro systems have been traditionally applied to ated interindividual variability is not obtained. variability in intrinsic metaboli needstobecoupledwiththepopulationvariabilityassociated with other physiologic processes indrug vivo binding (e.g., to hepatic plasma bloodpredictions proteins, flow, etc.). at Thus, to theapproach perform population (Trame in vivo et level,results al., a are 2016) integrated systems is into pharmacology desirable,pharmacokinetic population physiologically (PBPK) where based models the (Rostami-Hodjegan, inJones and 2012; vitro Rowland-Yeo, 2013; Tsamandouras et al., 2015a,b).
    [Show full text]