Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al Samiul Kaiser, M
World Academy of Science, Engineering and Technology International Journal of Mechanical and Materials Engineering Vol:13, No:9, 2019 Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al Samiul Kaiser, M. S. Kaiser stable against particle coarsening. It causes additional Abstract—The influence of Mg and Zr addition on mechanical distribution of dislocations which pin grain boundaries and properties such as hardness, tensile strength and impact energy of inhibit recrystallization. The Al3Zr particles form from the commercially pure Al are investigated. The microstructure and melt as a primary phase during rapid solidification, act as fracture behavior are also studied by using Optical and Scanning nuclei for the solidification of Al, and Zr can thus operate as Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the grain refiner of Al [13]-[15]. Based on the above point of view, Mg is added to expense of ductility due to formation of β″ (Al3Mg) and β′ (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through commercially pure Al used in this study to form the binary grain refinement effect and the formation of metastable alloy. The other element Zr is subsequently added with Mg to L12 Al3Zr precipitates. In addition, it is observed that the fractured study their mutual effect on the mechanical properties of cast surface of Mg added alloy is brittle and higher numbers of dimples Al at room temperatures. are observed in case of Zr added alloy. II. EXPERIMENTAL PROCEDURE Keywords—Al-alloys, hardness, tensile strength, impact energy, microstructure. -
Stress Corrosion Cracking of Friction Stir-Welded AA-2024 T3 Alloy
materials Article Stress Corrosion Cracking of Friction Stir-Welded AA-2024 T3 Alloy Marina Cabrini 1,2,3 , Sara Bocchi 4 , Gianluca D’Urso 4, Claudio Giardini 4 , Sergio Lorenzi 1,2,3,* , Cristian Testa 1,2,3 and Tommaso Pastore 1,2,3 1 Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine (BG), Italy; [email protected] (M.C.); [email protected] (C.T.); [email protected] (T.P.) 2 National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit of Bergamo, 24044 Dalmine (BG), Italy 3 Center for Colloid and Surface Science (CSGI) Research Unit of Bergamo, 24044 Dalmine (BG), Italy 4 Information and Production Engineering, Department of Management, University of Bergamo, 24044 Dalmine (BG), Italy; [email protected] (S.B.); [email protected] (G.D.); [email protected] (C.G.) * Correspondence: [email protected] Received: 2 May 2020; Accepted: 3 June 2020; Published: 8 June 2020 Abstract: The paper is devoted to the study of stress corrosion cracking phenomena in friction stir welding AA-2024 T3 joints. Constant load (CL) cell and slow strain rate (SSR) tests were carried out in aerated NaCl 35 g/L solution. During the tests, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were measured in the different zones of the welding. The results evidenced initial practical nobilty of the nugget lower compared to both heat-affected zone and the base metal. This effect can be mainly ascribed to the aluminum matrix depletion in copper, which precipitates in form of copper-rich second phases. -
Effect of Post Weld Heat Treatment on Aluminium Alloys
ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 7, Issue 12, December 2018 Effect of Post Weld Heat Treatment on Aluminium Alloys Sanket V Bhosale1, Vijay J Dhembare2, Jaydeep M Khade3, Department of Production Engineering, D Y Patil College of Engineering, Akurdi, Pune, India1,2,3 ABSTRACT:In this paper, the effect of post-weld heat treatment (PWHT) on mechanical properties and change in microstructure of friction stir welded 2024 and 7075 aluminum alloys are studied. Solution heat treatment and various ageing treatments were given to the welded joints. The PWHT procedures caused abnormal coarsening of the grains in the weld zone, which resulted in a drop in micro-hardness at the weld zone compared to the base material of the joints. Another objective of this work is to study effect of Post Weld Heat Treatment on hardness and tensile properties of material. To gate optimum result, hardness and tensile properties of parent material, welded material and heat treated material is compared. Vickers micro hardness test is used to study hardness of samples. KEYWORDS: Friction Stir Welding, Microstructure, aluminium, heat treatment. I. INTRODUCTION Today aluminium alloys are widely used in many manufacturing areas like aerospace, railways, military and automobile sector. Aluminium has low density and good mechanical properties as compared to other metals. Welding is widely used method for joining the alloys of aluminium. But welding of aluminium alloy is big challenge for designers because of oxide layer cavity and hot cracking sensitivity of aluminium alloy. -
Corrosion Behavior of 2024 Aluminum Alloys Structure Produced by Wire Arc Additive Manufacture
Corrosion Behavior of 2024 Aluminum Alloys Structure produced by Wire Arc Additive Manufacture A dissertation submitted to the University of the Manchester for the degree of MSc by Research In the Faculty of Engineering and Physical Sciences 2017 SIHAN TAN School of Materials Corrosion and Protection Centre Table of Contents List of figures ............................................................................................................................. 3 List of tables .............................................................................................................................. 5 Abstract ..................................................................................................................................... 6 Declaration .................................................................................................................................... 7 Copyright Statement ..................................................................................................................... 8 Acknowledgement ........................................................................................................................ 9 1 Introduction ........................................................................................................................ 10 2 Literature review ................................................................................................................. 12 2.1 History of AM ............................................................................................................. -
X-Ray Diffraction Studies of 145 Mev Proton-Irradiated Albemet 162
X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162 Mohamed Elbakhshwan1, Kirk T. McDonald2, Sanjit Ghose3, Zhong Zhong3, Nikolaos Simos1,3* 1Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, NY 11973 2Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 3National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 Abstract AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic post- irradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive x-ray- diffraction study using high-energy monochromatic and polychromatic x-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite. * Corresponding author Tel.: +1 631 344 7229 E-mail address: [email protected] 1. Introduction AlBeMet, an aluminum-beryllium compound with high Be content, is better described as a metal-matrix composite rather than an alloy, since the two metals remain as separate phases. -
Influence of the Microstructure on the Corrosion Behaviour of 2024 Aluminium Alloy Coated with a Trivalent Chromium Conversion Layer
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/21412 Official URL: https://doi.org/10.1016/j.corsci.2018.07.007 To cite this version: Saillard, Romain and Viguier, Bernard and Odemer, Grégory and Pugliara, Alessandro and Fori, Benoit and Blanc, Christine Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer. (2018) Corrosion Science, 142. 119-132. ISSN 0010-938X Any correspondence concerning this service should be sent to the repository administrator: [email protected] Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer ⁎ R. Saillarda, B. Viguiera, G. Odemera, A. Pugliaraa, B. Forib, C. Blanca, a CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France b MECAPROTEC Industries, 34 Boulevard de Joffrery, BP 30204, 31605 Muret Cedex, France ARTICLEINFO ABSTRACT Keywords: The influence of 2024 aluminium alloy microstructure on the protective properties of trivalent chromium A. Aluminium process (TCP) coatings was studied: samples aged at 190 °C were analysed by comparison to a T3 state. The A. Copper surface Cu coverage after deoxidation was higher for long-aged samples because nanometer scale Cu-rich pre- A. Intermetallics cipitates formed during ageing behaved as distinct electrochemical entities and contributed to the formation of A. Metal coatings copper deposits. The growth mechanisms and kinetics of TCP coatings were directly related to the surface Cu B. -
A Survey of Al7075 Aluminium Metal Matrix Composites
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 A Survey of Al7075 Aluminium Metal Matrix Composites Rajendra .S .K1, Ramesha .C .M2 1Research Scholar, Jain University, Bengaluru, Department of Industrial Engineering and Management, Dr. Ambedkar Institute of Technology, Bengaluru 2Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bengaluru Abstract:A composite material is a combination of two or more chemically distinct and insoluble phases; its properties and structural performance are superior to those of the constituents acting independently. Metals and ceramics, as well, can be embedded with particles or fibers, to improve their properties; these combinations are known as Metal-Matrix composites. Aluminum 7075 alloy constitutes a very important engineering material widely employed in the aircraft and aerospace industry for the manufacturing of different parts and components. It is due to its high strength to density ratio that it a sought after metal matrix composite. In this paper we present a survey of Al 7075 Metal Matrix Composites. Keywords: Metal Matrix Composites (MMC’s), Aluminium Metal Matrix, Beryl, Al7075, Aluminium alloy 1. Introduction Aluminium alloy 7075 is an aluminium alloy, with zinc as the primary alloying element. It is strong, with a strength The effects of research in Aluminium based Metal Matrix comparable to many steels, and has good fatigue strength and Composites (MMC’s) are far reaching these days. These average machinability, but has less resistance to corrosion composites find various applications in the automobile than many other Al alloys. Its relatively high cost limits its industry, the aerospace industry and in defence and marine use to applications where cheaper alloys are not suitable. -
Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments
Chapter 2 Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments N. L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes, J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. Thompson Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53752 1. Introduction Aluminium (Al) is an important structural engineering material, its usage ranking only behind ferrous alloys (Birbilis, Muster et al. 2011). The growth in usage and production of Al continues to increase (Davis 1999). The extensive use of Al lies in its strength:density ratio, toughness, and to some degree, its corrosion resistance. From a corrosion perspec‐ tive, which is most relevant to this chapter, Al has been a successful metal used in a num‐ ber of applications from commodity roles, to structural components of aircraft. A number of Al alloys can be satisfactorily deployed in environmental/atmospheric conditions in their conventional form, leaving the corrosion protection industry to focus on market needs in more demanding applications (such as those which require coating systems, for example, the aerospace industry). Relatively pure aluminium presents good corrosion resistance due to the formation of a bar‐ rier oxide film that is bonded strongly to its surface (passive layer) and, that if damaged, re- forms immediately in most environments; i.e. re-passivation (Davis 1999). This protective oxide layer is especially stable in near-neutral solutions of most non-halide salts leading to excellent pitting resistance. Nevertheless, in open air solutions containing halide ions, with Cl- being the most common, aluminium is susceptible to pitting corrosion. -
Effect of Actual and Accelerated Ageing on Microstructure Evolution and Mechanical Properties of a 2024-T351 Aluminium Alloy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 18653 To link to this article: DOI:10.1016/j.ijfatigue.2017.10.015 URL: http://dx.doi.org/10.1016/j.ijfatigue.2017.10.015 To cite this version: Prudhomme, Manida and Billy, François and Alexis, Joël and Benoit, Guillaume and Hamon, Florence and Larignon, Céline and Odemer, Grégory and Blanc, Christine and Hénaff, Gilbert Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy. (2018) International Journal of Fatigue, vol. 107. pp. 60-71. ISSN 0142-1123 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy M. Prudhommea,b, F. Billya, J. Alexisc, G. Benoita, F. Hamona, C. Larignonb, G. Odemerb, C. Blancb and G. Hénaffa, * a Pprime Institute, UPR 3346 CNRS-ENSMA-Université de Poitiers, ISAE-ENSMA, 1 avenue Clément Ader, 86961 Futuroscope Chasseneuil, France b CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4, allée Emile Monso BP 44362, 31030 Toulouse Cedex 4, France c LGP, ENIT, 47 avenue d'Azereix - BP 1629 - 65016 Tarbes CEDEX, France Abstract Due to the increasing number of civil transport aircrafts that come close to the end of the initial design life, airliners as well as aircraft manufacturers have to face different challenges. -
1. Introduction 2. Materials and Experimental Procedure Effect Of
Materials Research. 2015; 18(2): 328-333 © 2015 DOI: http://dx.doi.org/10.1590/1516-1439.307414 Effect of Quenching Rate and Pre-strain on the Strain Ageing Behaviors of 7075 Aluminum Alloys Ramazan Kaçara*, Kemal Güleryüzb aTechnology Faculty, Manufacturing Engineering Department, Karabük University, 78050, Yüzüncüyıl, Karabük, Turkey bTechnical Education Faculty, Karabuk University, 78050, Yüzüncüyıl, Karabuk, Turkey Received: July 7, 2014; Revised: March 9, 2015 The mechanical properties of aluminum alloys are strongly dependent on the thermo-mechanical process so, the strain ageing behavior of 7075 Al-alloy was investigated in this study. A set of test pieces was solution heat treated at 480 °C for 2 h, water quenched (SHTWQ) then pre-strained for 8% in tension. The test samples were aged at 140 °C for 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 24, 48, 72 and 96 h in a furnace. The other set of test samples were solution heat treated at 480 °C for 2 h, quenched in sand (SHTSQ) then pre-strained for 8% in tension. They were also aged at 140 °C for same intervals. The effect of strain ageing, on the mechanical properties of Al-alloy, was investigated by mean of hardness, and tensile tests. The results shown that, the quenching rate after solution heat treatment, ageing time and temperature, as well as pre-strain, play a very important role in the precipitation- hardening associated with ageing process of the 7075 Al-alloy. Keywords: static strain ageing, Al-alloys, pre-strain, quenching rate, ageing time 1. Introduction 2. Materials and Experimental Procedure 7000 series aluminum alloys have been widely used for The T6 heat treated commercially available 7075 Al-alloy aeronautical applications due to their desirable mechanical used in this study is a plate with a thickness of 10 mm. -
Improved Selective Laser Melting Processing of Aluminium-Silicon
IMPROVED SELECTIVE LASER MELTING PROCESSING OF ALUMINIUM-SILICON-MAGNESIUM ALLOYS Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Donal Lynch February 2019 Abstract This thesis details the investigation of the cracking phenomenon of aluminium alloy AA6061 processed by Selective Laser Melting (SLM) and proposes a modified alloy composition which was proven to eliminate cracking. High strength aluminium alloys are of commercial interest to the aerospace and automotive industries, in order to manufacture lightweight structural components. Current alloys that are regarded as processable through SLM are compromised by low strength, high cost or weight and this has led to an increased interest in developing high-medium strength aluminium alloys specifically for the SLM process. A thorough literature review was conducted to consider how different aluminium systems may perform when processed through SLM and subsequent heat treatments. From this, it was evident that alloys that can achieve appropriate mechanical properties are susceptible to cracking during the SLM process. AA6061 is an alloy within this category and it was selected for investigation due to its suitable mechanical properties, general use and availability in powder form. The potential sources of cracking are addressed in the literature review and a solution was proposed based on welding practices of AA6061. A powder blend of AA6061 powder and AlSi10Mg was made and processed by SLM. This imitates the practice of welding AA6061 with an Al-Si eutectic filler material. The blend ratio was selected to effectively adjust the silicon content of AA6061 by 1% and reflects the cracking susceptibility of binary Al-Mg2Si and Al-Si alloys. -
Turbulent Heat Transfer and Pressure Drop
DESIGN OPTIMIZATION OFMAGNETIC ALLOYS AND NICKEL-BASED SUPERALLOYS FOR HIGH TEMPERATURE APPLICATIONS Rajesh Jha George S. Dulikravich Department of Mechanical and Materials Engineering, MAIDROC Lab. Florida International University 10555 West Flagler Street, Miami, Florida 33174, U.S.A. [email protected], [email protected] Marcelo J. Colaço Department of Mechanical Engineering –POLI/COPPE Federal University of Rio de Janeiro - UFRJ Cidade Universitaria, Cx. Postal: 68503, Rio de Janeiro, RJ, 21941-972, Brazil [email protected] Abstract. Developing a new material or even improving properties of an existing material is a complex and time- consuming task. In recent years, materials scientists around the globe proposed a number of ways to speed up the alloy development process by using various computational tools. In this work, we made an attempt to demonstrate the efficacy of using computational tools in design optimization of materials, especially for high-temperature applications. We addressed two different material systems: Alnico alloys (magnetic) and Nickel-based superalloys. Alnico type alloys are hard magnetic alloys and well known for high-temperature applications. In this work, we defined the variable range of various elements and generated an initial set of alloys by a quasi-random sequence generation algorithm. These alloys were synthesized and tested for determining various material properties. We used a response surface methodology approach to develop surrogate models (meta-models) that approximately linked alloy chemistry with desired properties for these multi-component systems while being computationally affordable. These models were further used for multi-objective optimization of desired (conflicting) properties by using a number of algorithms based on evolutionary approaches, as well as our hybrid optimizer.