Nader Engheta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sept. 30 Issue Final
UNIVERSITY OF PENNSYLVANIA Tuesday September 30, 2003 Volume 50 Number 6 www.upenn.edu/almanac Two Endowed Chairs in Political Science Dr. Ian S. Lustick, professor of political director of the Solomon Asch Center for Study ternational Organization, and Journal of Inter- science, has been appointed to the Bess Hey- of Ethnopolitical Conflict. national Law and Politics. The author of five man Professorship. After earning his B.A. at A specialist in areas of comparative politics, books and monographs, he received the Amer- Brandeis University, Dr. Lustick completed international politics, organization theory, and ican Political Science Associationʼs J. David both his M.A. and Ph.D. at the University of Middle Eastern politics, Dr. Lustick is respon- Greenstone Award for the Best Book in Politics California, Berkeley. sible for developing the computational model- and History in 1995 for his Unsettled States, Dr. Lustick came to ing platform known as PS-I. This software pro- Disputed Lands: Britain and Ireland, France Penn in 1991 following gram, which he created in collaboration with and Algeria, Israel and the West Bank-Gaza. In 15 years on the Dart- Dr. Vladimir Dergachev, GEngʼ99, Grʼ00, al- addition to serving as a member of the Council mouth faculty. From lows social scientists to simulate political phe- on Foreign Relations, Dr. Lustick is the former 1997 to 2000, he served nomena in an effort to apply agent-based model- president of the Politics and History Section of as chair of the depart- ing to public policy problems. His current work the American Political Science Association and ment of political sci- includes research on rights of return in Zionism of the Association for Israel Studies. -
Nader Engheta Is the H. Nedwill Ramsey Professor At
Nader Engheta is the H. Nedwill Ramsey Professor at the University of Pennsylvania in Philadelphia, with affiliation in the Departments of Electrical and Systems Engineering, Bioengineering, Physics and Astronomy, and Materials Science and Engineering. He received the BS degree (with highest rank) in electrical engineering from the University of Tehran, Iran, the MS degree in electrical engineering and the Ph.D. degree in electrical engineering and physics from the California Institute of Technology (Caltech), Pasadena, California. After spending one year as a Postdoctoral Research Fellow at Caltech and four years as a Senior Research Scientist at Kaman Sciences Corporation's Dikewood Division in Santa Monica, California, he joined the faculty of the University of Pennsylvania, where he rose through the ranks and is currently H. Nedwill Ramsey Professor. He was the graduate group chair of electrical engineering from July 1993 to June 1997. He has received numerous awards for his research including the 2017 William Streifer Scientific Achievement Award from the IEEE Photonics Society (to be presented October 2, 2017), the 2017 Photonics Media Industry Beacons Award, the 2015 Fellow of the US National Academy of Inventors (NAI), the 2015 Gold Medal from SPIE (the international society for optics and photonics), the 2015 National Security Science and Engineering Faculty Fellow (NSSEFF) Award (also known as Vannevar Bush Faculty Fellow Award) from US Department of Defense, the 2015 IEEE Antennas and Propagation Society Distinguished Achievement Award, the 2015 Wheatstone Lecture at the King’s College London, the 2014 Balthasar van der Pol Gold Medal from the International Union of Radio Science (URSI), the 2013 Inaugural SINA (“Spirit of Iranian Noted Achiever”) Award in Engineering, the 2013 Benjamin Franklin Key Award from the IEEE Philadelphia Section, the 2012 IEEE Electromagnetics Award, the 2008 George H. -
Traditional and Emerging Materials for Optical Metasurfaces
Nanophotonics 2017; 6 (2):452–471 Review Article Open Access Alexander Y. Zhu, Arseniy I. Kuznetsov, Boris Luk’yanchuk, Nader Engheta, and Patrice Genevet* Traditional and emerging materials for optical metasurfaces DOI 10.1515/nanoph-2016-0032 sive understanding of the wave-matter interaction and our Received September 30, 2015; accepted January 27, 2016 ability to artificially manipulate it, particularly at small length scales. This has in turn been largely driven by the Abstract: One of the most promising and vibrant research discovery and engineering of materials at extreme limit. areas in nanotechnology has been the field of metasur- These “metamaterials” possess exotic properties that go faces. These are two dimensional representations of meta- beyond conventional or naturally occurring materials. En- atoms, or artificial interfaces designed to possess special- compassing many new research directions, the field of ized electromagnetic properties which do not occur in na- metamaterials is rapidly expanding, and therefore, writ- ture, for specific applications. In this article, we present a ing a complete review on this subject is a formidable task; brief review of metasurfaces from a materials perspective, here instead, we present a comprehensive review in which and examine how the choice of different materials impact we discuss the progress and the emerging materials for functionalities ranging from operating bandwidth to effi- metasurfaces, i.e. artificially designed ultrathin two di- ciencies. We place particular emphasis on emerging and mensional optical metamaterials with customizable func- non-traditional materials for metasurfaces such as high in- tionalities to produce designer outputs. dex dielectrics, topological insulators and digital metama- Metasurfaces are often considered as the two di- terials, and the potentially transformative role they could mensional versions of 3D metamaterials. -
Cloaking a Sensor Andrea Alù University of Texas at Austin; University of Pennsylvania
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarlyCommons@Penn University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering 6-8-2009 Cloaking a Sensor Andrea Alù University of Texas at Austin; University of Pennsylvania Nader Engheta University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/ese_papers Part of the Electrical and Computer Engineering Commons Recommended Citation Andrea Alù and Nader Engheta, "Cloaking a Sensor", . June 2009. Suggested Citation: Alù, A. and Engheta, N. (2009). "Cloaking a Sensor." Physical Review Letters. 102, 233901. © 2009 The American Physical Society http://dx.doi.org/10.1103/PhysRevLett.102.233901 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/577 For more information, please contact [email protected]. Cloaking a Sensor Abstract We propose the general concept of cloaking a sensor without affecting its capability to receive, measure, and observe an incoming signal. This may be obtained by using a plasmonic sensor, based on cloaking, made of materials available in nature at infrared and optical frequencies, or realizable as a metamaterial at lower frequencies. The er sult is a sensing system that may receive and transmit information, while its presence is not perceived by the surrounding, which may be of fundamental importance in a wide range of biological, optics, physics, and engineering applications. -
Metamaterials 2012 St
17th-22nd September Metamaterials 2012 St. Petersburg, Russia th 6 International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Programme http://congress2012.metamorphose-vi.org St.St. Petersburg,Petersburg, RussiaRussia Table of Contents Foreword.......................................................................................................................................................4 Preface.........................................................................................................................................................5 Welcome Message......................................................................................................................................6 Committee................................................................................................................................................7 Location.......................................................................................................................................................8 Conference Venue.......................................................................................................................................9 St. Petersburg Attractions........................................................................................................................10 Programme Monday, 17th September Optical and UV Metamaterials...............................................................................12 Microwave Metamaterials......................................................................................13 -
ARTIFICIAL MATERIALS for NOVEL WAVE PHENOMENA Metamaterials 2019
ROME, 16-21 SEPTEMBER 2019 META MATE RIALS 13TH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA Metamaterials 2019 Proceedings In this edition, there are no USB sticks for the distribution of the proceedings. The proceedings can be downloaded as part of a zip file using the following link: 02 President Message 03 Preface congress2019.metamorphose-vi.org/proceedings2019 04 Welcome Message To browse the Metamaterials’19 proceedings, please open “Booklet.pdf” that will open the main file of the 06 Program at a Glance proceedings. By clicking the papers titles you will be forwarded to the specified .pdf file of the papers. Please 08 Monday note that, although all the submitted contributions 34 Tuesday are listed in the proceedings, only the ones satisfying requirements in terms of paper template and copyright 58 Wednesday form have a direct link to the corresponding full papers. 82 Thursday 108 Student paper competition 109 European School on Metamaterials Quick download for tablets and other mobile devices (370 MB) 110 Social Events 112 Workshop 114 Organizers 116 Map: Crowne Plaza - St. Peter’s 118 Map to the Metro 16- 21 September 2019 in Rome, Italy 1 President Message Preface It is a great honor and pleasure for me to serve the Virtual On behalf of the Technical Program Committee (TPC), Institute for Artificial Electromagnetic Materials and it is my great pleasure to welcome you to the 2019 edition Metamaterials (METAMORPHOSE VI) as the new President. of the Metamaterials Congress and to outline its technical Our institute spun off several years ago, when I was still a program. -
Fundamentals and Applications in Narrowband Transmission Color Filtering
Nanophotonic Structures: Fundamentals and Applications in Narrowband Transmission Color Filtering Thesis by Dagny Fleischman In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2019 Defended June 22, 2018 ii © 2019 Dagny Fleischman ORCID: 0000-0003-2913-657X All rights reserved iii ACKNOWLEDGEMENTS This has been an incredible journey, and it would not have come together without the support and wisdom of a phenomenal group of people. They say it takes a village to raise a child, and through this experience I’ve seen that is equally applicable to graduate students, because it has certainly taken a village to raise me. First and foremost, I want to thank my advisor, Harry Atwater. I am incredibly grateful for the freedom Harry has given me to turn my childhood fascination with colors into an extremely gratifying research path. Harry embodies everything a scientist and faculty member should be: keenly intelligent, insatiably curious, and someone who cares as deeply about his students as he does the science he is studying. As much as he has contributed to my development as a scientist, he has added even more to my understanding of just how much an individual can contribute to science and technology. We often joke in lab that “we can’t all be Harry Atwater” and I will always be deeply impressed by the nearly impossibly high bar he has set for us all to aspire to. In addition to Harry’s mentorship, I was extremely fortunate to have Luke Sweat- lock as a mentor during the early years of my PhD. -
Annual Report 2010
Annual Report University of Central Florida 2010 CREOL – The College of Optics and Photonics Contents Message from the Dean……………………………………………………….. 1 1. Faculty and Staff 1.1 Faculty …………………………………………………………….. 2 Awards and Honors …………………………………………. 8 Fellows of Professional Societies……………………………… 9 Presidents, Directors and Officers of Professional Societies……………………………………………………….. 10 Journal Editors & Associate Editors …………………………. 11 Authors & Editors of Books ………………………………… 12 Awards & Honors (2010) ……………………………………… 13 1.2 Research Staff ……………………………………………………… 14 1.3 Organization and Administrative Staff …………………………… 15 2. Academic Programs ………………………………………………………. 18 2.1 Graduate Recruitment and Enrollment …………………………… 18 2.2 Degrees Awarded ………………… ……………………………. 20 2.3 PhD Dissertations ……………………………………………… 21 2.4 Courses Taught ………………………………………………… 23 2.5 Course and Program Development …………………………….. 23 2.6 Instructional Laboratories ………………………………………… 25 2.7 Colloquia, Seminars and Workshops……………………………. 26 2.8 International Collaboration ………………………………………. 30 3. Research …………………………………………………………………… 32 3.1 Areas of Research ………………………………………………… 32 3.2 Laboratories and Facilities ………………………………………. 35 3.3 Publications ……………………………………………………… 38 Books ………………………………………………………. 38 Book Chapters ………………………………………………. 38 Journal Publications ………………………………………… 39 Conference Papers …………………………………………… 45 Presentations and Lectures …………………………………… 49 Patents and Disclosures ……………………………………… 60 3.4 Research Funding ………………………………………………… 64 New Projects ………………………………………………… 64 Continuing -
IEEE Photonics Society News
February 2017 Vol. 31, No. 1 www.PhotonicsSociety.org Growing Canada’s Silicon Photonics Research Capacity by Chrostowski et al. Also Inside: • Photonics Start-ups 101: The Exit by Poole • Meet the new members of the society’s BoG • Spotlight on society members inducted into the National Academy of Inventors • Membership news including initiatives on women in photonics, outreach, and STEM…and more! February 2017 Vol. 31, No. 1 www.PhotonicsSociety.org Growing Canada’s Silicon Photonics Research Capacity by Chrostowski et al. Also Inside: • Photonics Start-ups 101: The Exit by Poole • Meet the new members of the society’s BoG • Spotlight on society members inducted into the National Academy of Inventors • Membership news including initiatives on women in photonics, outreach, and STEM…and more! February 2017 Volume 31, Number 1 FEATURE Research Highlight. 4 – Growing Canada’s Silicon Photonics Research Capacity 9 Spotlight On �������������������������������������������������������������������������������������������������������������������������7 • Photonics Start-ups 101: The Exit News . 9 • Book Review: Principles of Optics for Engineers by William S.C. Chang • Winners of the 2016 IEEE Maker Project Competition Announced • IEEE Receives National Recognition as a Great Workplace by the Independent Analysts at Great Place to Work® • National Photonics Initiative Commends U.S. Congress for Bipartisan Effort to Pass American Innovation and Competitiveness Act • New York Governor Cuomo Announces U.S. AIM Photonics Manufacturing Facility to be Located in Rochester’s Eastman Business Park at ON Semiconductor • Texas High School Student Designs Self-Cooling Solar Cell Careers and Awards . 15 • IEEE Photonics Society—Call for Nominations • Call for Nominations IEEE Photonics Society 2017 Distinguished Service Award • Meet the Newly Elected Members of the Board of Governors 2017–2019 • Petition for Candidates for Election to the Photonics Society Board of Governors • Professor E.M. -
A Metamaterial Path Towards Optical Integrated Nanocircuits
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 A Metamaterial Path Towards Optical Integrated Nanocircuits Fereshteh Abbasi Mahmoudabadi University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons, and the Optics Commons Recommended Citation Abbasi Mahmoudabadi, Fereshteh, "A Metamaterial Path Towards Optical Integrated Nanocircuits" (2015). Publicly Accessible Penn Dissertations. 1570. https://repository.upenn.edu/edissertations/1570 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1570 For more information, please contact [email protected]. A Metamaterial Path Towards Optical Integrated Nanocircuits Abstract Metamaterials are known to demonstrate exotic electromagnetic and optical properties. The extra control over manipulation of waves and fields afforded by metamaterials can be exploited towards exploring various platforms, e.g., optical integrated circuits. Nanophotonic integrated circuits have been the topic of past and ongoing research in multiple fields including, but not limited o,t electrical engineering, optics and materials science. In the present work, we theoretically study and analyze metamaterial properties that can be potentially utilized in the future design of optical integrated circuits. On this path, we seek inspiration from electronics to tackle multiple issues in developing such layered nanocircuitry. We identify modularity, directionality/isolation and tunability as three useful features of electronics and we theoretically explore mimicking them in nanoscale optics. Using epsilon-near-zero (ENZ) and mu-near- zero (MNZ) properties we propose concepts to transplant some aspects of modular design of electronic passive circuits and filters into nanophotonics. We also exploit ENZ materials to develop “transformer- like” functionality in optical nanocircuits. -
Controlling the Phase of Light by Nanostructuring of Materials by David Barth a Dissertation Submitted in Partial Satisfaction O
Controlling the Phase of Light by Nanostructuring of Materials by David Barth A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering { Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Lydia Sohn Professor Laura Waller Summer 2017 Controlling the Phase of Light by Nanostructuring of Materials Copyright 2017 by David Barth 1 Abstract Controlling the Phase of Light by Nanostructuring of Materials by David Barth Doctor of Philosophy in Engineering { Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair The previous century was defined to a major extent by the digital revolution, which ushered in the information age. This rapid proliferation and improvement of electronic technology continues to have far-reaching effects on human existence. Similarly, advances in photonics have the potential to lead to technology that drastically changes our lives. So far, the vast potential of photonics, and especially nanophotonics, has not resulted in such sweeping societal change. While the laser, LED, and photovoltaic cell serve important, and increasing, functions, technological advances in photon control at the nanoscale are required for the full potential of photonics for computing, medicine, and energy to be realized. In this dissertation, we examine some methods and devices that can address these needs in photonics, particularly by exploiting the refractive index of materials, the phase of light, and the relation between the two. The first chapter focuses on controlling the refractive index of silicon by inducing spatially varying porosity. This technique enables the fabrication of gradient index devices that can control light's propagation through the device to a degree that is not possible with traditional optical elements. -
Transformation Optics for Plasmonics: from Metasurfaces to Excitonic Strong Coupling
Transformation Optics for Plasmonics: from Metasurfaces to Excitonic Strong Coupling Paloma A. Huidobro1;∗, Antonio I. Fern´andez-Dom´ınguez2;y 1Instituto de Telecomunicaes, Insituto Superior Te´ecnico-University of Lisbon, Avenida Rovisco Pais 1,1049-001 Lisboa, Portugal 2Departamento de F´ısicaTe´orica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autnoma de Madrid, E-28049 Madrid, Spain ∗[email protected] [email protected] August 1, 2019 Abstract We review the latest theoretical advances in the application of the framework of Transformation Optics for the analytical description of deeply sub-wavelength electromagnetic phenomena. First, we present a general description of the technique, together with its usual exploitation for meta- material conception and optimization in different areas of wave physics. Next, we discuss in detail the design of plasmonic metasurfaces, includ- ing the description of singular geometries which allow for broadband ab- sorption in ultrathin platforms. Finally, we discuss the quasi-analytical treatment of plasmon-exciton strong coupling in nanocavities at the single emitter level. 1 Introduction The development of Transformation Optics [1, 2] (TO) has been instrumen- tal in the fast development that metamaterial science has experienced during the last years [3]. This theoretical tool exploits the invariance of macroscopic Maxwell's equations under coordinate transformations to establish a link be- tween an electromagnetic (EM) phenomenon, described by the transformation, and the material response required for its realization. Thus, TO determines the way in which the EM constitutive relations, and therefore the permittivity and permeability tensors, must be tailored in space in order to obtain a desired arXiv:1907.13546v1 [cond-mat.mes-hall] 31 Jul 2019 effect.