Pdf (514.15 K)

Total Page:16

File Type:pdf, Size:1020Kb

Pdf (514.15 K) Carapace of the African Sideneck turtle Olukole et al. Morphological Analysis of the Carapace of the African Sideneck Turtle (Pelusios castaneus) Olukole S.G.⃰ 1; Okusanya B.O.2; Agbato O.A. 1, Kekere A. D. 1; Oyeyemi M.O. 2; Oke B.O. 1 1Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Iba- dan, Ibadan, Nigeria. 2 Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria. With 3 figures received in September, accepted for publication September 2013 Abstract marginal scutes with the infra- The morphological analysis of the marginal scute forming the bridge carapace of the African sideneck between the carapace and plastron. turtle (Pelusios castaneus) was car- The turtle had seven neural bones ried out using twenty adult turtles flanked on each side by eight pairs comprising twenty females and forty of pleurals, while eleven pairs of pe- males picked up at different times in ripheral bones surrounded the pleu- various river banks in Ibadan, Nige- rals. The basic anatomy of the shell ria with the view to providing base- of this animal is similar to those of line information that could be useful earlier reports on shell morphology in the comparative osteology of sea of the chelonians. and freshwater turtles as well as in the identification of the shell of the Keywords: Carapace, plastron, turtle in paleontological and archae- morphology, scutes, turtle. ological investigations. The average body weight of the turtles used for Introduction the study was 0.82 ± 0.03kg. The The African sideneck turtle (Pelusi- curved carapace and plastron os castaneus) is a freshwater turtle lengths of the turtles were 26.4 of the family Pelomedusidae, widely ±1.87cm and 19.3 ± 1.13cm, re- distributed in West Africa, occurring spectively. The carapace of the tur- from Guinea and Senegal to north- tles varied from dark brown to dark western Angola (Kirkpatrick, 1995). in colour, had five vertebral, four The P. castaneus is a small to me- pairs of costal and twelve pairs of J. Vet. Anat. 47 Vol 7 No 1, (2014) 47 - 56 Carapace of the African Sideneck turtle Olukole et al. dium in size, with relatively exten- functions especially in adults (Erim various river banks in Ibadan, Nige- The carapace had the following sive plastron that may have a hinge et al., 2006). ria, were used for the study. The scutes: vertebral, costal or lateral, present between the pectoral and animals were kept in artificial ponds marginal and inframarginal. In all abdominal scutes (Olukole et al., A number of research reports on the and were stabilized for 72 hours pri- the turtles studied, the vertebral 2010). The turtle shell has long at- shell morphology of chelonians had or to the investigations carried out. scutes were constantly five in num- tracted the attention of comparative been documented. The shell mor- They were fed with commercial fish ber, flat in structure and medial in anatomists, being comprised of dor- phology of the land tortoise, Testu- pellets ad libitum. Standard body position overlaying the enclosed sal and ventral moieties, termed the do graeca Linnaeus, had been doc- parameters were all determined us- vertebrae of the animals (figure 1). carapace and plastron, respectively umented (Amiranashvili, 2000; Per- ing a Draper® 115 mm vernier cali- In all the turtles studied, the second (Nagashima et al., 2012). ala, 2001; Delfino et al., 2009). Also, per and metric tape. The body and third costal scutes matched up shell morphology had been de- weight of the animals was taken with the seventh marginal scute A conservative life history pattern scribed in the Kemp’s ridley, the with the aid of a Microvar® weighing while the third and fourth costal has enabled chelonians to persist Dermochelys and the Loggerhead balance. The turtles were anaesthe- scutes matched up with the ninth for roughly 200 million years and (Wyneken, 2001) as well as in the tized using ketamine HCl at marginal scute. The first and last inhabit terrestrial, fresh water, and Tropical tortoise chelonoidis den- 25mg/kg body weight intramuscular- pairs of marginal scutes are in con- marine habitats (Frazer, 2000). This ticulate (Manzano, 2009). The plas- ly at the medial aspects of the thigh tact with the first and fifth vertebral long persistence of chelonians is tral morphology of four different muscle and then sacrificed by cervi- scutes while marginals III to X relate partly due to the possession of an subspecies of the Caspian turtle cal decapitation. The preparation of with the costal scutes medially. extremely specialised body wall otherwise known as the striped- skeletons of the animals was ob- The inframarginal scute formed the called the shell comprising discrete neck terrapin (Mauremys caspica) tained through hot water maceration bridge between the carapace and bony and epidermal elements. The had also been reported (Tilman and (Sommer and Anderson, 1974). The plastron in each of the turtles. The turtle shell has been considered a Uwe, 1996). arrangement and number of scutes bony elements of the carapace ob- textbook example of a morphologi- and bony elements of the shell were served on each turtle were the nu- cal novelty (Gilbert et al., 2001). There is scarcity of research infor- then investigated. Anatomical no- chal bone, the neural bones, the Turtles are unique among living tet- mation on the shell morphology of menclature used in the study fol- pleurals, the suprapygal and pygal, rapods in that they possess a box- freshwater turtles of African origin. lowed the reports of Lapparent de the peripheral bones, and fused ver- like shell that is formed by dorsal This study provides the first detailed Broin (2001) and Wyenken (2001). tebrae. The nuchal bone relates and ventral parts (the carapace and osteological description of the cara- with the first peripheral bone lateral- plastron), which together cover most pace of the African sideneck turtle, Results ly and with the first pleural latero- of the body of the animals. The car- which could be helpful in the identi- The average body weight of the tur- caudally on both sides of the apace and plastron are of neural fication of the turtle in paleontologi- tles used for the study was 0.82 ± midseam of the plastron. Caudal to crest origin (Clark et al., 2001), de- cal and archaeological remains as 0.03 kg. The curved carapace and the nuchal bone were the neural riving from vertebral and rib ele- well as in the comparative osteology plastron lengths were 26.4 ± 1.87cm bones, seven in number. The mid- ments and lying superficial to both of sea and freshwater turtles. and 19.3 ± 1.13cm, respectively. longitudinal series of neural ele- limb girdles (Burke, 1989). The tur- The carapaces of the turtles used ments were flanked on each side by tle shell provides a significant Material and methods for the study were broadly oval cau- a lateral costal series (pleurals), measure of protection from preda- A total of 20 adult African sideneck dally but blunt cranially; varying while a peripheral set of bones sur- tion and is involved in locomotory turtles picked up at different times in from dark brown to dark in colour. round the pleurals (Figure 2). The J. Vet. Anat. 48 Vol 7 No 1, (2014) 47 - 56 Carapace of the African Sideneck turtle Olukole et al. dium in size, with relatively exten- functions especially in adults (Erim various river banks in Ibadan, Nige- The carapace had the following sive plastron that may have a hinge et al., 2006). ria, were used for the study. The scutes: vertebral, costal or lateral, present between the pectoral and animals were kept in artificial ponds marginal and inframarginal. In all abdominal scutes (Olukole et al., A number of research reports on the and were stabilized for 72 hours pri- the turtles studied, the vertebral 2010). The turtle shell has long at- shell morphology of chelonians had or to the investigations carried out. scutes were constantly five in num- tracted the attention of comparative been documented. The shell mor- They were fed with commercial fish ber, flat in structure and medial in anatomists, being comprised of dor- phology of the land tortoise, Testu- pellets ad libitum. Standard body position overlaying the enclosed sal and ventral moieties, termed the do graeca Linnaeus, had been doc- parameters were all determined us- vertebrae of the animals (figure 1). carapace and plastron, respectively umented (Amiranashvili, 2000; Per- ing a Draper® 115 mm vernier cali- In all the turtles studied, the second (Nagashima et al., 2012). ala, 2001; Delfino et al., 2009). Also, per and metric tape. The body and third costal scutes matched up shell morphology had been de- weight of the animals was taken with the seventh marginal scute A conservative life history pattern scribed in the Kemp’s ridley, the with the aid of a Microvar® weighing while the third and fourth costal has enabled chelonians to persist Dermochelys and the Loggerhead balance. The turtles were anaesthe- scutes matched up with the ninth for roughly 200 million years and (Wyneken, 2001) as well as in the tized using ketamine HCl at marginal scute. The first and last inhabit terrestrial, fresh water, and Tropical tortoise chelonoidis den- 25mg/kg body weight intramuscular- pairs of marginal scutes are in con- marine habitats (Frazer, 2000). This ticulate (Manzano, 2009). The plas- ly at the medial aspects of the thigh tact with the first and fifth vertebral long persistence of chelonians is tral morphology of four different muscle and then sacrificed by cervi- scutes while marginals III to X relate partly due to the possession of an subspecies of the Caspian turtle cal decapitation.
Recommended publications
  • Competing Generic Concepts for Blanding's, Pacific and European
    Zootaxa 2791: 41–53 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Competing generic concepts for Blanding’s, Pacific and European pond turtles (Emydoidea, Actinemys and Emys)—Which is best? UWE FRITZ1,3, CHRISTIAN SCHMIDT1 & CARL H. ERNST2 1Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, D-01109 Dresden, Germany 2Division of Amphibians and Reptiles, MRC 162, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, USA 3Corresponding author. E-mail: [email protected] Abstract We review competing taxonomic classifications and hypotheses for the phylogeny of emydine turtles. The formerly rec- ognized genus Clemmys sensu lato clearly is paraphyletic. Two of its former species, now Glyptemys insculpta and G. muhlenbergii, constitute a well-supported basal clade within the Emydinae. However, the phylogenetic position of the oth- er two species traditionally placed in Clemmys remains controversial. Mitochondrial data suggest a clade embracing Actinemys (formerly Clemmys) marmorata, Emydoidea and Emys and as its sister either another clade (Clemmys guttata + Terrapene) or Terrapene alone. In contrast, nuclear genomic data yield conflicting results, depending on which genes are used. Either Clemmys guttata is revealed as sister to ((Emydoidea + Emys) + Actinemys) + Terrapene or Clemmys gut- tata is sister to Actinemys marmorata and these two species together are the sister group of (Emydoidea + Emys); Terra- pene appears then as sister to (Actinemys marmorata + Clemmys guttata) + (Emydoidea + Emys). The contradictory branching patterns depending from the selected loci are suggestive of lineage sorting problems. Ignoring the unclear phy- logenetic position of Actinemys marmorata, one recently proposed classification scheme placed Actinemys marmorata, Emydoidea blandingii, Emys orbicularis, and Emys trinacris in one genus (Emys), while another classification scheme treats Actinemys, Emydoidea, and Emys as distinct genera.
    [Show full text]
  • Influence of Habitat and Predation on Population Dynamics of the Freshwater Turtle Myuchelys Georgesi
    Herpetologica, 69(1), 2013, 46–57 Ó 2013 by The Herpetologists’ League, Inc. INFLUENCE OF HABITAT AND PREDATION ON POPULATION DYNAMICS OF THE FRESHWATER TURTLE MYUCHELYS GEORGESI 1,2,4 1,3 SEAN J. BLAMIRES AND RICKY-JOHN SPENCER 1School of Biological Sciences A08, University of Sydney, NSW 2006, Australia. 2Department of Life Science, Tunghai University, 181 Section 3, Taichung-kan Road, Taichung City, Taiwan 407-04, R.O.C. 3School of Science and Health, Wildlife and Aquatic Ecology Group (Native and Pest Animal Unit), University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia ABSTRACT: Demographic models identify whether animals are vulnerable to local extirpation, but including all ecological parameters across life history stages may be impeded by practical difficulties. When processes acting on certain life stages cannot be measured, extrapolations are often made. A previous study documented that the range of the turtle Myuchelys georgesi is restricted to the Bellinger River, New South Wales, Australia, and its population is stable. We assessed whether M. georgesi selects certain habitats by comparing their distribution among different water holes. We assessed the threat of catfish predation by examining the stomach contents of catfish specimens. We then evaluated whether threats to M. georgesi were likely to have been underestimated by extending our previous demographic model. We did this by revising the previous estimates of adult, juvenile, and hatchling survivorship under hypothetical variations in water hole use and in the presence or absence of catfish predators. We found that M. georgesi preferentially uses moderate to deep water holes. We also found that although catfish 250À400 mm consume hatchling or juvenile turtles, those .
    [Show full text]
  • Download Vol. 33, No. 3
    1. , F -6 ~.: 1/JJ/im--3'PT* JL* iLLLZW 1- : s . &, , I ' 4% Or *-* 0 4 Z 0 8 of the FLORIDA STATE MUSEUM Biological Sciences Volume 33 1988 Number 3 REPRODUCTIVE STRATEGIES OF SYMPATRIC FRESHWATER EMYDID TURTLES IN NORTHERN PENINSULAR FLORIDA Dale R. Jackson 3-C p . i ... h¢ 4 f .6/ I Se 4 .¢,$ I - - 64». 4 +Ay. 9.H>« UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF TIIE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and,are not necessarily completed in any one calendar year. S. DAVID WEBB, Editor OLIVER L. AUSTIN, JR., Editor Bile,ints RHODA J. BRYANT, Managing Editor Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor, Bulletin; Florida State Museum; University of Florida; Gainesville FL 32611; U.S.A. This public document was promulgated at an annual cost of $2003.53 or $2.000 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the circum- Caribbean region. ISSN: 0071-6154 CODEN: BFSBAS Publication date: 8/27 Price: $2.00 REPRODUCTIVE STRATEGIES OF SYMPATRIC FRESHWATER EMYDID TURTLES IN NORTHERN PENINSULAR FLORIDA Dale R. Jackson Frontispiece. Alligator nest on Payne's Prairie, Alachua County, Florida, opened to expose seven clutches of Psmdenzys nelsoni eggs and one clutch of Trioi,br ferox eggs (far lower right) surrounding the central clutch of alligator eggs. Most of the alligator eggs had been destroyed earlier by raccoons. REPRODUCTIVE STRATEGIES OF SYMPATRIC FRESHWATER EMYDID TURTLES IN NORTHERN PENINSULAR FLORIDA Dale R.
    [Show full text]
  • Testudines: Pelomedusidae: Pelusios and Pelomedusa)
    Zoologica Scripta Molecular phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: Pelusios and Pelomedusa) UWE FRITZ,WILLIAM R. BRANCH,MARGARETHA D. HOFMEYR,JE´ ROˆ ME MARAN,HYNEK PROKOP, ALFRED SCHLEICHER,PAVEL Sˇ IROKY´ ,HEIKO STUCKAS,MARIO VARGAS-RAMI´REZ,MIGUEL VENCES & ANNA K. HUNDSDO¨ RFER Submitted: 15 August 2010 Fritz, U., Branch, W. R., Hofmeyr, M. D., Maran, J., Prokop, H., Schleicher, A., Sˇ iroky´, Accepted: 22 October 2010 P., Stuckas, H., Vargas-Ramı´rez, M., Vences, M. & Hundsdo¨rfer, A. K. (2010). Molecular doi:10.1111/j.1463-6409.2010.00464.x phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: Pelusios and Pelomedusa). — Zoologica Scripta, 00, 000–000. With 18 currently recognised species, Pelusios is one of the most speciose chelonian genera worldwide, even though the taxonomy of some species is contentious. Recent investigations suggested that the closely related, but morphologically distinct genus Pelomedusa is para- phyletic with respect to Pelusios, and that Pelomedusa consists of nine deeply divergent lin- eages. Using three mitochondrial and three nuclear DNA fragments (2054 bp mtDNA, 2025 bp nDNA), we examined for the first time the phylogeny of Pelusios by molecular means. Our analyses included all Pelusios species, except the probably extinct P. seychellensis, as well as the nine Pelomedusa lineages. The results showed that Pelusios and Pelomedusa are reciprocally monophyletic. Limited sampling of Pelusios species and homoplasy introduced by remote outgroups most likely explain the paraphyly of Pelomedusa in previous studies. The distinctiveness of most Pelusios species was confirmed, but none of the currently recognised species groups within Pelusios was monophyletic.
    [Show full text]
  • Demographic Consequences of Superabundance in Krefft's River
    i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate.
    [Show full text]
  • Eastern Snake-Necked Turtle
    Husbandry Manual for Eastern Snake-Necked Turtle Chelodina longicollis Reptilia: Chelidae Image Courtesy of Jacki Salkeld Author: Brendan Mark Host Date of Preparation: 04/06/06 Western Sydney Institute of TAFE - Richmond Course Name and Number: 1068 Certificate 3 - Captive Animals Lecturers: Graeme Phipps/Andrew Titmuss/ Jacki Salkeld CONTENTS 1. Introduction 4 2. Taxonomy 5 2.1 Nomenclature 5 2.2 Subspecies 5 2.3 Synonyms 5 2.4 Other Common Names 5 3. Natural History 6 3.1 Morphometrics 6 3.1.1 Mass and Basic Body Measurements 6 3.1.2 Sexual Dimorphism 6 3.1.3 Distinguishing Features 7 3.2 Distribution and Habitat 7 3.3 Conservation Status 8 3.4 Diet in the Wild 8 3.5 Longevity 8 3.5.1 In the Wild 8 3.5.2 In Captivity 8 3.5.3 Techniques Used to Determine Age in Adults 9 4. Housing Requirements 10 4.1 Exhibit/Enclosure Design 10 4.2 Holding Area Design 10 4.3 Spatial Requirements 11 4.4 Position of Enclosures 11 4.5 Weather Protection 11 4.6 Temperature Requirements 12 4.7 Substrate 12 4.8 Nestboxes and/or Bedding Material 12 4.9 Enclosure Furnishings 12 5. General Husbandry 13 5.1 Hygiene and Cleaning 13 5.2 Record Keeping 13 5.3 Methods of Identification 13 5.4 Routine Data Collection 13 6. Feeding Requirements 14 6.1 Captive Diet 14 6.2 Supplements 15 6.3 Presentation of Food 15 1 7. Handling and Transport 16 7.1 Timing of Capture and Handling 16 7.2 Capture and Restraint Techniques 16 7.3 Weighing and Examination 17 7.4 Release 17 7.5 Transport Requirements 18 7.5.1 Box Design 18 7.5.2 Furnishings 19 7.5.3 Water and Food 19 7.5.4 Animals Per Box 19 7.5.5 Timing of Transportation 19 7.5.6 Release from Box 19 8.
    [Show full text]
  • Recent Evolutionary History of the Australian Freshwater Turtles Chelodina Expansa and Chelodina Longicollis
    Recent evolutionary history of the Australian freshwater turtles Chelodina expansa and Chelodina longicollis. by Kate Meredith Hodges B.Sc. (Hons) ANU, 2004 A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Biological Sciences Department of Genetics and Evolution The University of Adelaide December, 2015 Kate Hodges with Chelodina (Macrochelodina) expansa from upper River Murray. Photo by David Thorpe, Border Mail. i Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
    [Show full text]
  • Status Review, Disease Risk Analysis and Conservation Action Plan for The
    Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW).
    [Show full text]
  • Resolving the Phylogenetic History of the Short-Necked Turtles, Genera
    Molecular Phylogenetics and Evolution 68 (2013) 251–258 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Resolving the phylogenetic history of the short-necked turtles, genera Elseya and Myuchelys (Testudines: Chelidae) from Australia and New Guinea ⇑ Minh Le a,b,c, , Brendan N. Reid d, William P. McCord e, Eugenia Naro-Maciel f, Christopher J. Raxworthy c, George Amato g, Arthur Georges h a Department of Environmental Ecology, Faculty of Environmental Science, Hanoi University of Science, VNU, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam b Centre for Natural Resources and Environmental Studies, VNU, 19 Le Thanh Tong Street, Hanoi, Viet Nam c Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA d Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA e East Fishkill Animal Hospital, 455 Route 82, Hopewell Junction, NY 12533, USA f Biology Department, College of Staten Island, City University of New York, Staten Island, NY 10314, USA g Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA h Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia article info abstract Article history: Phylogenetic relationships and taxonomy of the short-necked turtles of the genera Elseya, Myuchelys, and Received 15 October 2012 Emydura in Australia and New Guinea have long been debated as a result of conflicting hypotheses sup- Revised 14 March 2013 ported by different data sets and phylogenetic analyses. To resolve this contentious issue, we analyzed Accepted 24 March 2013 sequences from two mitochondrial genes (cytochrome b and ND4) and one nuclear intron gene (R35) from Available online 4 April 2013 all species of the genera Elseya, Myuchelys, Emydura, and their relatives.
    [Show full text]
  • Indian Freshwater Turtles, Which Are Usually Bigger
    Fantastic Facts Indian Part 3 Freshwater Turtles Conservation / Threat Status of Turtles Many turtles, terrapins and tortoises are threatened with extinction, that is, dying out completely. Listed below are the turtles discussed in this article (from Part 1 to 3), with their status, or prospects of survival. Name Status (Global) Assam Roofed Turtle Endangered Cochin Forest Cane Turtle Endangered Crowned River Turtle Vulnerable Rock Terrapin Near Threatened Indian Flapshell Turtle Least Concern Indian Softshell Turtle Vulnerable Indian Narrow-headed Softshell Turtle Endangered Red-crowned Roofed Turtle Critically Endangered Northern River Terrapin Critically Endangered THE CATEGORIES Critically Endangered -- This is the highest category that a species can be assigned before “extinction”. It represents a “last ditch” effort to provide a warning to wildlife agencies and governments to activate management measures to protect the species before it disappears from the face of the earth. When a species is Critically Endangered, usually its chances of living for the next 100 years are very low. Often, its chances of surviving even for 10 years are not good at all ! Endangered -- This is the second highest threat category that a species can be assigned before it becomes further threatened e.g. Critically Endangered or Extinct. When a species is Endangered, its chances of survival as a species for the next 100 years are low. Vulnerable -- The IUCN Red List defines Vulnerable as when a species is not Critically Endangered or Endangered, but is still facing a high risk of extinction in the wild. This is the first threat category for ranking a species when it has some serious problems from human-related threats.
    [Show full text]
  • Proposals for Amendments to Appendices I and Ii
    CoP 16 Prop. xx CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ______________________ Sixteenth Meeting of the Conference of the Parties (Bangkok, Thailand), March 3-14, 2013 CONSIDERATION OF PROPOSALS FOR AMENDMENTS TO APPENDICES I AND II A. Proposal Inclusion of the following taxa of the Family Geoemydidae in Appendix II: Cyclemys spp., Geoemyda japonica, G. spengleri, Hardella thurjii, Mauremys japonica, M. nigricans, Melanochelys trijuga, Morenia petersi, Sacalia bealei, S. quadriocellata, and Vijayachelys silvatica. This proposal is in accordance with Article II paragraph 2(a) of the Convention, satisfying Criterion B, Annex 2a of Res. Conf. 9.24 (Rev CoP15). This proposal seeks a zero quota on wild specimens for commercial purposes for the following taxa: Batagur borneoensis, B. trivittata, Cuora aurocapitata, C. flavomarginata, C. galbinifrons, C. mccordi, C. mouhotii, C. pani, C. trifasciata, C. yunnanensis, C. zhoui, Heosemys annandalii, H. depressa, Mauremys annamensis, and Orlitia borneensis. For a complete list of species see Table 1 B. Proponent People’s Republic of China and the United States of America*1 C. Supporting Statement 1. Taxonomy 1.1 Class: Reptilia By Stephen D Nash 1.2 Order: Testudines 1.3 Family: Geoemydidae Theobald 1868a 1.4 Genus, species or subspecies: * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author.
    [Show full text]
  • A New Subspecies of Chelodina Mccordi (Testudines: Chelidae) from Eastern Rote Island, Indonesia
    A New Subspecies of Chelodina mccordi (Testudines: Chelidae) from Eastern Rote Island, Indonesia By William P. McCord1, Mehdi Joseph-Ouni2, and Cris Hagen3 1East Fishkill Animal Hospital, Hopewell Junction, NY 12533, USA. 2EO Wildlife & Wilderness Conservation, Brooklyn, NY 11228, USA. 3Savannah River Ecology Laboratory, Aiken, SC 29802, USA. Abstract. A recent field trip to Rote (Pulau Rote; Roti) Island involving these authors has confirmed that two morphologically distinct forms of Chelodina exist there; leading here to a formal description and diagnosis of Chelodina mccordi roteensis ssp. nov. from eastern Rote Island, Indonesia. Our morphological and phenotypic analysis differentiates this new subspecies from the conspecific nominotypical form. Key words: Turtle, Pleurodira, chelid, Chelodina mccordi, Rote Island, Indonesia. Extant species of side-necked turtles narrow parietal crests, relatively more robust heads (Pleurodira Cope, 1864) are assigned to three (for subgeneric group A) and shells, and an overall families: Chelidae Gray, 1825, Podocnemidae brown coloration. Cope, 1868, and Pelomedusidae Cope, 1868. Chelodina mccordi was once well distributed Within the family Chelidae, the genus throughout the lakes and swamps of Rote Island Chelodina Fitzinger, 1826, includes species of snake- or (SALIM and YUWONO, pers. obs.). In the seasonal long-necked turtles. Historically (GOODE, 1967; BUR- lakes of the Central Plateau region, which may have BIDGE et al., 1974) and recently (GEORGES et al., been a zone of intergradation between eastern and 2002), Chelodina has been designated as comprising first western populations, C. mccordi has experienced near two, then three subgeneric groups: A (= Chelodina), B complete extirpation. In the past 20 years population (= Macrochelodina Wells and Wellington, 1985), and C numbers have been diminished to near extinction by (unnamed, containing only Chelodina oblonga Gray, both the pet trade and mismanaged agricultural prac- 1841, = Chelodina colliei Gray, 1856).
    [Show full text]