Nathan Dam Fitzroy River Turtle Distribution, Reproductive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geographic Variation in the Matamata Turtle, Chelus Fimbriatus, with Observations on Its Shell Morphology and Morphometry
n*entilkilt ilil Biok,gr', 1995. l(-l):19: 1995 by CheloninD Research Foundltion Geographic Variation in the Matamata Turtle, Chelus fimbriatus, with Observations on its Shell Morphology and Morphometry MlncBLo R. SANcnnz-Vu,urcnAr, PnrER C.H. PnrrcHARD:, ArrnEro P.rorrLLo-r, aNn Onan J. LINlnBs3 tDepartment of Biological Anthropolog-,- and Anatomy, Duke lJniversin' Medical Cetter. Box 3170, Dtu'hcun, North Carolina277l0 USA IFat 919-684-8034]; 2Florida Audubotr Societ-t, 460 High,n;a,- 436, Suite 200, Casselberry, Florida 32707 USA: iDepartanento de Esttdios Anbientales, llniyersitlad Sinzrin Bolltnt", Caracas ]O80-A, APDO 89OOO l/enerte\a Ansrucr. - A sample of 126 specimens of Chelusftmbriatus was examined for geographic variation and morphology of the shell. A high degree of variation was found in the plastral formula and in the shape and size of the intergular scute. This study suggests that the Amazon population of matamatas is different from the Orinoco population in the following characters: shape ofthe carapace, plastral pigmentation, and coloration on the underside of the neck. Additionatly, a preliminary analysis indicates that the two populations could be separated on the basis of the allometric growth of the carapace in relation to the plastron. Kry Wonus. - Reptilia; Testudinesl Chelidae; Chelus fimbriatus; turtle; geographic variationl allometryl sexual dimorphism; morphology; morphometryl osteology; South America 'Ihe matamata turtle (Chelus fimbricttus) inhabits the scute morpholo..ey. Measured characters (in all cases straight- Amazon, Oyapoque. Essequibo. and Orinoco river systems line) were: maximum carapace len.-uth (CL). cArapace width of northern South America (Iverson. 1986). Despite a mod- at the ler,'el of the sixth marginal scute (CW). -
Movement and Habitat Use of Australias Largest Snakenecked Turtle
bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 Movement and habitat use of Australia’s largest snake-necked turtle: implications for water management D. S. Bower1*, M. Hutchinson2 & A. Georges1 1 Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia 2 South Australian Museum, Adelaide, SA, Australia Keywords Abstract freshwater; radio-telemetry; home range; weir; tortoise; river; sex differences. Hydrological regimes strongly influence ecological processes in river basins. Yet, the impacts of management regimes are unknown for many freshwater taxa in Correspondence highly regulated rivers. We used radio-telemetry to monitor the movement and Deborah S. Bower, School of Environmental activity of broad-shelled river turtles Chelodina expansa to infer the impact of and Life Sciences, University of Newcastle, current water management practices on turtles in Australia’s most regulated river Callaghan, NSW 2308, Australia. – the Murray River. We radio-tracked C. expansa to (1) measure the range span Tel: +61 02 49212045; and examine the effect of sex, size and habitat type on turtle movement, and (2) Fax: +61 02 49 216923 examine habitat use within the river channel and its associated backwaters. C. Email: [email protected] expansa occupied all macro habitats in the river (main channel, backwater, swamp and connecting inlets). Within these habitats, females occupied discrete home *Present address: School of Environmental ranges, whereas males moved up to 25 km. The extensive movement of male and Life Sciences, University of Newcastle, turtles suggests that weirs and other aquatic barriers may interfere with movement Callaghan, NSW, 2308, Australia. and dispersal. Turtles regularly move between backwaters and the main river channel, which highlights the likely disturbance from backwater detachment, a Editor: Virginia Hayssen water saving practice in the lower Murray River. -
Demographic Consequences of Superabundance in Krefft's River
i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate. -
Register 2 0
© T E R R A R I S T I K - F A C H M A G A Z I N R E G I S T E R 2 0 1 0 1 REPTILIA-Register 2010 Terrarienpraxis 85, Oktober/November, 15(5): 38–45. BIRTEL, Andreas (2010): Ein Gewächshaus für Grüne Leguane und Pan- GEHRING, Philip-Sebastian, Maciej PABIJAN, Fanomezana M. RATSOAVI- therchamäleons. – Nr. 84, August/September 2010, 15(4): 44–45. NA, Jörn KÖHLER, Konrad MEBERT & Frank GLAW (2010): Calum- BRAUN, Sandra (2010): Bau eines naturnahen Schauterrariums für ein ma tarzan. Eine neue Chamäleonart aus Madaskar braucht dringend Jemenchamäleon. – Nr. 84, August/September 2010, 15(4): 40–43. Hilfe! – Nr. 86, Dezember 2010/Januar 2011, 15(6): 60–64. FRÖMBERG, Carsten (2010): Gestaltung von Verstecken unter Nutzung GUTSCHE, Alexander (2010): Mehrere Amphibien- und Reptilienarten von Latex-Bindemittel. – Nr. 84, August/September 2010, 15(4): neu in das Washingtoner Artenschutzabkommen (CITES) aufge- 36–38. nommen. – Nr. 83, Juni/Juli 2010, 15(3): 3–8. LONGHITANO, Filip (2010): Vorteile der Rackhaltung. – Nr. 84, August/ JACHAN, Georg (2010): Pfl ege und Vermehrung der Usambara-Busch- September 2010, 15(4): 34–35. viper Atheris ceratophora. – Nr. 83, Juni/Juli 2010, 15(3): 58–68. SCHLÜTER, Uwe (2010): Ernährung nord- und westafrikanischer Wara- KOCH, André (2010): Bestialische Behandlung indonesischer Großrep- ne in der Natur und bei Terrarienhaltung. – Nr. 86, Dezember 2010/ tilien für westliche Luxusprodukte. – Nr. 86, Dezember 2010/Januar Januar 2011, 15(6): 36–45. 2011, 15(6): 3–6. SCHMIDT, Dieter (2010): Naturterrarium oder Heimtierkäfi g? – Nr. 84, KOCH, Claudia (2010): Geheimnisvolles Peru. -
Testudines: Chelidae) of Australia, New Guinea and Indonesia
Zoological Journal of the Linnean Society, 2002, 134, 401–421. With 7 figures Electrophoretic delineation of species boundaries within the genus Chelodina (Testudines: Chelidae) of Australia, New Guinea and Indonesia ARTHUR GEORGES1*, MARK ADAMS2 and WILLIAM McCORD3 1Applied Ecology Research Group, University of Canberra, ACT 2601, Australia 2Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5001, Australia 3East Fishkill Animal Hospital, 285 Rt 82, Hopewell Junction NY 12533, USA Received February 2001; revised and accepted for publication June 2001 A total of 281 specimens of long-necked chelid turtles (Chelodina) were obtained from drainages of Australia, Papua New Guinea and the island of Roti in Indonesia. Ten diagnosable taxa were identified using allozyme profiles at 45 presumptive loci. Chelodina expansa, C. parkeri, C. rugosa and C. burrungandjii are in a Group A clade, C. longi- collis, C. novaeguineae, C. steindachneri, C. pritchardi and C. mccordi are in a Group B clade, and C. oblonga is in a monotypic Group C clade, with each clade thought to represent a distinct subgenus. Chelodina siebenrocki is syn- onymised with C. rugosa. An eleventh taxon, C. reimanni, could not be distinguished from C. novaeguineae on the basis of allozyme profiles, but it is morphologically distinct. Its status is therefore worthy of further investigation. Three instances of natural hybridization were detected. Chelodina rugosa and C. novaeguineae hybridize in the Gulf country of Queensland, with evidence of backcrossing to C. novaeguineae. Chelodina longicollis and C. novaeguineae hybridize in central coastal Queensland, and C. rugosa and C. burrungandjii hybridize along their zone of contact in the plateau escarpment streams and pools. -
Recent Evolutionary History of the Australian Freshwater Turtles Chelodina Expansa and Chelodina Longicollis
Recent evolutionary history of the Australian freshwater turtles Chelodina expansa and Chelodina longicollis. by Kate Meredith Hodges B.Sc. (Hons) ANU, 2004 A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Biological Sciences Department of Genetics and Evolution The University of Adelaide December, 2015 Kate Hodges with Chelodina (Macrochelodina) expansa from upper River Murray. Photo by David Thorpe, Border Mail. i Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. -
Status Review, Disease Risk Analysis and Conservation Action Plan for The
Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW). -
Resolving the Phylogenetic History of the Short-Necked Turtles, Genera
Molecular Phylogenetics and Evolution 68 (2013) 251–258 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Resolving the phylogenetic history of the short-necked turtles, genera Elseya and Myuchelys (Testudines: Chelidae) from Australia and New Guinea ⇑ Minh Le a,b,c, , Brendan N. Reid d, William P. McCord e, Eugenia Naro-Maciel f, Christopher J. Raxworthy c, George Amato g, Arthur Georges h a Department of Environmental Ecology, Faculty of Environmental Science, Hanoi University of Science, VNU, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam b Centre for Natural Resources and Environmental Studies, VNU, 19 Le Thanh Tong Street, Hanoi, Viet Nam c Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA d Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA e East Fishkill Animal Hospital, 455 Route 82, Hopewell Junction, NY 12533, USA f Biology Department, College of Staten Island, City University of New York, Staten Island, NY 10314, USA g Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA h Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia article info abstract Article history: Phylogenetic relationships and taxonomy of the short-necked turtles of the genera Elseya, Myuchelys, and Received 15 October 2012 Emydura in Australia and New Guinea have long been debated as a result of conflicting hypotheses sup- Revised 14 March 2013 ported by different data sets and phylogenetic analyses. To resolve this contentious issue, we analyzed Accepted 24 March 2013 sequences from two mitochondrial genes (cytochrome b and ND4) and one nuclear intron gene (R35) from Available online 4 April 2013 all species of the genera Elseya, Myuchelys, Emydura, and their relatives. -
A New Subspecies of Chelodina Mccordi (Testudines: Chelidae) from Eastern Rote Island, Indonesia
A New Subspecies of Chelodina mccordi (Testudines: Chelidae) from Eastern Rote Island, Indonesia By William P. McCord1, Mehdi Joseph-Ouni2, and Cris Hagen3 1East Fishkill Animal Hospital, Hopewell Junction, NY 12533, USA. 2EO Wildlife & Wilderness Conservation, Brooklyn, NY 11228, USA. 3Savannah River Ecology Laboratory, Aiken, SC 29802, USA. Abstract. A recent field trip to Rote (Pulau Rote; Roti) Island involving these authors has confirmed that two morphologically distinct forms of Chelodina exist there; leading here to a formal description and diagnosis of Chelodina mccordi roteensis ssp. nov. from eastern Rote Island, Indonesia. Our morphological and phenotypic analysis differentiates this new subspecies from the conspecific nominotypical form. Key words: Turtle, Pleurodira, chelid, Chelodina mccordi, Rote Island, Indonesia. Extant species of side-necked turtles narrow parietal crests, relatively more robust heads (Pleurodira Cope, 1864) are assigned to three (for subgeneric group A) and shells, and an overall families: Chelidae Gray, 1825, Podocnemidae brown coloration. Cope, 1868, and Pelomedusidae Cope, 1868. Chelodina mccordi was once well distributed Within the family Chelidae, the genus throughout the lakes and swamps of Rote Island Chelodina Fitzinger, 1826, includes species of snake- or (SALIM and YUWONO, pers. obs.). In the seasonal long-necked turtles. Historically (GOODE, 1967; BUR- lakes of the Central Plateau region, which may have BIDGE et al., 1974) and recently (GEORGES et al., been a zone of intergradation between eastern and 2002), Chelodina has been designated as comprising first western populations, C. mccordi has experienced near two, then three subgeneric groups: A (= Chelodina), B complete extirpation. In the past 20 years population (= Macrochelodina Wells and Wellington, 1985), and C numbers have been diminished to near extinction by (unnamed, containing only Chelodina oblonga Gray, both the pet trade and mismanaged agricultural prac- 1841, = Chelodina colliei Gray, 1856). -
AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory. -
Gulf Snapping Turtle (Elseya Lavarackorum) Impact Assessment and Monitoring Proposal DRAFT
Gulf Snapping Turtle (Elseya lavarackorum) Impact Assessment and Monitoring Proposal DRAFT Date: February 2010 Project: Redbank Copper ERL 94 Purpose: Assess and monitor the potential impacts of proposed mining operations on the Gulf Snapping Turtle Scope: Redbank ERL and surrounds (2010 – 2011) Authorisation: Prepared by: Huon Clark Date: 22 Feb 2010 Accreditation by: Date: Approved by: Date: Gulf Snapping Turtle Impact Assessment and Monitoring Proposal TABLE OF CONTENTS Purpose .............................................................................................................................................................................. 1 Species information .......................................................................................................................................................... 1 Species Status ................................................................................................................................................................. 1 Key Threatening Processes ............................................................................................................................................. 1 Potential Presence in the Vicinity of the Mine ............................................................................................................... 1 Life Strategies and Habitat Requirements ..................................................................................................................... 1 General Mine-Related Impacts to the Gulf Snapping -
Latitudinal Variation in Egg and Clutch Size in Turtles
Latitudinal variation in egg and clutch size in turtles JOHNB. IVERSON,CHRISTINE P. BALGOOYEN,KATHY K. BYRD,AND KELLYK. LYDDAN Department of Biology, Earlham College, Richmond, IN 473 74, U.S. A. Received February 23, 1993 Accepted September 16, 1993 IVERSON,J.B., BALGOOYEN,C.P., BYRD,K.K., and LYDDAN,K.K. 1993. Latitudinal variation in egg and clutch size in turtles. Can. J. Zool. 71: 2448-2461. Reproductive and body size data from 169 populations of 146 species (56% of those recognized), 65 genera (75%), and 11 families (92%)of turtles were tabulated to test for latitudinal variation in egg and clutch size. Body-size-adjusted correla- tion analysis of all populations (as well as within most families) revealed (i) a significant negative relationship (r2 = 0.26) between latitude and egg size, (ii) a significant positive relationship (r2 = 0.2 1) between latitude and clutch size, and (iii) no relationship between latitude and clutch mass. Phylogenetic contrast analyses corroborated these patterns. Clutch size was also negatively correlated with egg size across all populations as well as within most families. We evaluate the applicability to turtles of hypotheses postulated to explain such latitudinal patterns for other vertebrate groups. The observed pattern may be the result of latitudinal variation in selection on egg size and (or) clutch size, as well as on the optimal trade-off between these two traits. IVERSON,J.B., BALGOOYEN,C.P., BYRD,K.K., et LYDDAN,K.K. 1993. Latitudinal variation in egg and clutch size in turtles. Can. J. Zool. 71 : 2448-2461. Les donnCes relatives h la reproduction et h la taille ont CtC enregistrkes chez 169 populations de 146 espkces (56% des espkces actuelles), 65 genres (75 %) et 11 familles (92%) de tomes; ces donnCes ont CtC organiskes en tableau afin d'Ctudier la variation latitudinale de la taille des oeufs et du nombre d'oeufs par couvCe.