Combined with the Gemini South Adaptive Optics Imager (GSAOI), and the Arrival, Integration, First Light, and Start of Commissioning of the Gemini Planet Imager (GPI)

Total Page:16

File Type:pdf, Size:1020Kb

Combined with the Gemini South Adaptive Optics Imager (GSAOI), and the Arrival, Integration, First Light, and Start of Commissioning of the Gemini Planet Imager (GPI) 1 Director’s Message 23 First Light from the Markus Kissler-Patig Gemini Planet Imager Bruce Macintosh and Peter Michaud 3 Weighing the Black Hole in M101 ULX-1 27 Science Highlights Nancy A. Levenson Stephen Justham and Jifeng Liu GeMS Embarks on the 8 Ground-based Transit Spectroscopy 38 of an Exoplanet Atmosphere Universe Benoit Neichel and Rodrigo Carrasco Jacob Bean, Kevin Stevenson, Jean- Michel Desert, and Marcel Bergmann 43 Operations Corner Andy Adamson 14 Dynamical Masses of Galaxy Clusters Discovered with the 48 Instrument Development 2013 Sunyaev-Zel’dovich Effect Scot Kleinman Cristóbal Sifón, Felipe Menanteau, John P. Hughes, and L. Felipe Barrientos 54 Gemini Interns: A Glimpse to the Future 19 The Earliest Near-infrared Peter Michaud Spectroscopy of a Type Ia 56 Giving Back Supernova Peter Michaud, Maria Antonieta Eric Hsiao, Howie Marion, García, and Janice Harvey and Mark Phillips ON THE COVER: GeminiFocus January 2014 and 2013 Year in Review The cover of this first GeminiFocus is a quarterly publication of Gemini Observatory “Annual Review” issue of GeminiFocus 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720 USA features images from Phone: (808) 974-2500 Fax: (808) 974-2589 the Gemini Planet Online viewing address: Imager’s first light, www.gemini.edu/geminifocus obtained in late 2013 Managing Editor: Peter Michaud (see story on page Science Editor: Nancy A. Levenson 23), and the previous Associate Editor: Stephen James O’Meara covers of GeminiFocus from 2013. All issues Designer: Eve Furchgott / Blue Heron Multimedia of GeminiFocus are Any opinions, findings, and conclusions or recommendations expressed in this available at: material are those of the author(s) and do not necessarily reflect the views of the www.gemini.edu/ National Science Foundation. geminifocus Markus Kissler-Patig Director’s Message 2013: A Successful Year for Gemini! As 2013 comes to an end, we can look back at 12 very successful months for Gemini despite strong budget constraints. Indeed, 2013 was the first stage of our three-year transition to a reduced opera- tions budget, and it was marked by a roughly 20 percent cut in contributions from Gemini’s partner countries. Nevertheless, our staff excelled at working on the many initiatives that will allow us to operate Gemini in a sustainable way, while providing most of the services that our users appreciate. We also managed to deliver to the Gemini community three new exciting instruments at Gemini South, as well as host two visiting instruments at Gemini North. In addition, we launched the new Large and Long Programs, complementing the standard semester-based method of administering telescope time. Gains at Gemini South With four facility-class instruments and an adaptive optics system, Gemini South is now configured as it will operate for the next few years. First, the Gemini Multi-conjugate adaptive optics System (GeMS) with the Gemini South Adaptive Optics Imager (GSAOI) was introduced early in the year with first science. The system moved into regular operations soon thereafter. This complex system will still require a few more semesters of operations until it runs as smoothly as some of the old workhorse instruments, but the first papers based on its data have appeared, and the instrument is heavily subscribed. Second, FLAMINGOS-2 was commissioned in imaging- and long-slit modes during the first half of the year. It jumped immediately to the next-most demanded instrument behind the two Gemi- ni Multi-Object Spectrographs. We anticipate that the remaining image-quality problems can be solved in 2014, after which we will add the much anticipated near-infrared Multi-Object Spectro- graph mode. January2014 2013 Year in Review GeminiFocus 1 Finally, the Gemini Planet Imager made a flam- Large and Long programs have received the boyant entry with its integration of first light in go-ahead from the Gemini Board, and the first November (see article on page 23 of this issue)! call went out in December. This scheme also led us to introduce “Priority Visiting Observing” Gemini North News — a way to observe classically while mitigating At Gemini North, we took routine operations to the risk of weather loss. Check it out at: http:// a high level — dedicating close to 95 percent of www.gemini.edu/node/11101?q=node/12096. 2013 to science observations. Also, we were able The Fast Turnaround scheme has been re- and happy to host two visiting instruments: the viewed by our advisory committees and is now Differential Speckle Survey Instrument (Steven being prototyped. We hope to introduce it by Howell, Principal Investigator (PI)) and the Texas the end of 2014. Echelon Cross Echelle Spectrograph (John Lacy, We also recognized that more “post-observing” PI). Both instruments have unique capabilities support would be very beneficial to the user that enhance Gemini’s complement of facility- community. While in-house efforts are being class instruments. Beyond being used for the PI’s spent, we also wanted to engage our users dedicated programs, both visiting instruments in supporting each other. As a result, we are were offered to the user community while being launching a new Data Reduction User Forum operated by the PI‘s teams. In the coming years, at: http://drforum.gemini.edu. Please add to the we are looking forward to more groups bringing discussion — the best contributions will be re- their instruments or experiments to our state- warded with Director Discretionary Time! of-the-art telescopes! Overall, during 2013 we saw many advances Operations Decisions in our support of the community, with original ideas that contribute to Gemini’s uniqueness. Driven by budget cuts, we reviewed the core Our outlook for 2014 promises to be no less Observatory operations. We reflected on how exciting. We are looking forward to many new our users’ science could direct the way in which discoveries by our community in the new year. we operate, rather than having our operations constrain the users’ science. This concept gen- erated many ideas. In particular, it led us to Markus Kissler-Patig is Gemini’s Director. He can consider adding two future proposal modes: be reached at: [email protected] 1) Large and Long programs that enable multi- year, high-impact ambitious projects; and 2) a Fast Turnaround proposal scheme, allowing us- ers to obtain data only a few weeks after submit- ting their proposals. 2 GeminiFocus 2013 Year in Review January2014 Stephen Justham and Jifeng Liu Weighing the Black Hole in M101 ULX-1 Astronomers have measured the mass of an ultra-luminous X-ray source, producing a puzzle over how to explain the observed X-ray properties and leaving a hole in the quest for intermediate-mass black holes. M101 ULX-1 is a transient ultra-luminous X- Figure 1. ray source with characteristics expected of Artist’s impression an accreting, intermediate-mass black hole of M101 ULX-1. In (IMBH). A series of Gemini spectra have de- the foreground is the tected a Wolf-Rayet star in the system and black hole, surrounded by an accretion disk; revealed its orbital motion. This constrains matter falling into the mass of the black hole in M101 ULX-1; the black hole via the object is too massive to be a neutron the disk produces the star but very unlikely to be an intermediate- X-ray luminosity of the mass black hole. The data also show that system. That matter the black hole accretes from the wind of originates from the wind of a Wolf-Rayet the star, not the overflow of the donor star’s star, shown in the Roche lobe, as illustrated in Figure 1. distance. In the far background is one “Ultra-luminous X-ray sources” (ULXs) sit of the spiral arms of at the intersection of two fundamental M101. problems in astrophysics, since this class of systems contains objects which appear to be Gemini illustration by more luminous than the Eddington limit allows for stellar-mass black holes. That definition Lynette Cook. is somewhat imprecise because we don’t know the definitive upper mass limit for “stellar- mass” black holes. Nonetheless, the questions raised by the existence of these systems are clear: Is the Eddington limit somehow exceeded in ULXs? Or do ULXs contain black holes with higher-than-expected masses, perhaps even intermediate-mass IMBHs? January2014 2013 Year in Review GeminiFocus 3 Such IMBHs have long been the topic of Another easy-looking option would be to speculation and searches. Two classes of discard the Eddington limit (which assumes black holes are observationally well-estab- spherical symmetry) on the plausible-seem- lished: the stellar-mass black holes discov- ing grounds that accretion through a disk is ered in Galactic X-ray binaries, and the su- not spherically-symmetric. The simple ver- permassive ones in the centers of galaxies, sion of this argument fails, however, because, with a large mass gap separating the two at luminosities approaching the Eddington classes. The best IMBH candidate so far is in luminosity, the inner parts of the accretion ESO 243-49 HLX-1, for which the recently-in- disk are expected to become radiation-pres- ferred black hole mass does enter the upper sure dominated. Without some additional end of the IMBH range (Webb et al., 2012), unknown mechanism, the inner disk would depending on the definition adopted. consequently thicken and the accretion ge- ometry would become quasi-spherical. The remaining wide gap between stellar- mass and supermassive black holes is frus- More complicated ways of circumventing trating for those hunting them, since many the Eddington limit have been proposed. theorists assume that today’s supermassive These have tended to invoke a mechanism black holes formed via “seed” IMBHs.
Recommended publications
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Gemini Planet Imager Spectroscopy of the Dusty Substellar Companion HD 206893 B
    The Astronomical Journal, 161:5 (24pp), 2021 January https://doi.org/10.3847/1538-3881/abc263 © 2020. The American Astronomical Society. All rights reserved. Gemini Planet Imager Spectroscopy of the Dusty Substellar Companion HD206893B K. Ward-Duong1,2 , J. Patience2, K. Follette3 , R. J. De Rosa4,5 , J. Rameau6,7 , M. Marley8 , D. Saumon9 , E. L. Nielsen4 , A. Rajan10 , A. Z. Greenbaum11 , J. Lee12, J. J. Wang13,14,40 , I. Czekala4,14,41 , G. Duchêne6,14 , B. Macintosh4 , S. Mark Ammons15 , V. P. Bailey16 , T. Barman17 , J. Bulger18,19 , C. Chen10 , J. Chilcote4,20 , T. Cotten12 , R. Doyon7, T. M. Esposito14 , M. P. Fitzgerald21 , B. L. Gerard22,23 , S. J. Goodsell24 , J. R. Graham14, P. Hibon5 , J. Hom2 , L.-W. Hung25 , P. Ingraham26 , P. Kalas14,27 , Q. Konopacky28 , J. E. Larkin21 , J. Maire28, F. Marchis27 , C. Marois23,29 , S. Metchev30,31 , M. A. Millar-Blanchaer16,42 , R. Oppenheimer32 , D. Palmer15 , M. Perrin10 , L. Poyneer15, L. Pueyo10, F. T. Rantakyrö33 , B. Ren34 , J.-B. Ruffio4 , D. Savransky35 , A. C. Schneider36,37 , A. Sivaramakrishnan10 , I. Song12 , R. Soummer10 , M. Tallis4, S. Thomas26 , J. Kent Wallace16 , S. Wiktorowicz38 , and S. Wolff39 1 Five College Astronomy Department, Amherst College, Amherst, MA 01002, USA; [email protected] 2 School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287, USA 3 Physics & Astronomy Department, Amherst College, 21 Merrill Science Drive, Amherst, MA 01002, USA 4 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 5 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 6 Univ.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Journal Reprints-Astronomy/Download/8526
    SPACE PATTERNS AND PAINTINGS (published in the "Engineer" magazine No. 8-9, 2012) Sagredo. - If the end of the pen, which was on the ship during my entire voyage from Venice to Alexandretta, were able to leave a visible trace of its entire path, then what kind of trace, what mark, what line would it leave? Simplicio. - I would leave a line stretching from Venice to the final place, not completely straight, or rather, extended in the form of an arc of a circle, but more or less wavy, depending on how much the ship swayed along the way ... Sagredo. - If, therefore, the artist, upon leaving the harbor, began to draw with this pen on a sheet of paper and continued drawing until Alexandretta, he could get from his movement a whole picture of figures ... at least a trace left ... by the end of the pen would be nothing more than a very long and simple line. G. Galileo "Dialogue on the two main systems of the world" Space has been giving astronomers surprise after surprise lately. A number of mysterious space objects were discovered that were not predicted by astrophysics and contradicted it. The more advanced observation methods become, the more such surprises. At one time, I. Shklovsky argued that the discovery of such "cosmic wonders" would confirm the reality of extraterrestrial intelligence, its enormous technical capabilities. But in reality, the "cosmic miracles" showed the backwardness of terrestrial science, which the opium of relativism smiled so much that now it cannot clearly explain ordinary cosmic phenomena caused by natural causes.
    [Show full text]
  • 1 Director's Message
    1 Director’s Message Markus Kissler-Patig 3 Weighing the Black Hole in M101 ULX-1 Stephen Justham and Jifeng Liu 8 World’s Most Powerful Planet Finder Turns its Eye to the Sky: First Light with the Gemini Planet Imager Bruce Macintosh and Peter Michaud 12 Science Highlights Nancy A. Levenson 15 Operations Corner: Update and 2013 Review Andy Adamson 20 Instrumentation Development: Update and 2013 Review Scot Kleinman ON THE COVER: GeminiFocus January 2014 The cover of this issue GeminiFocus is a quarterly publication of Gemini Observatory features first light images from the Gemini 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720 USA Planet Imager that Phone: (808) 974-2500 Fax: (808) 974-2589 were released at the Online viewing address: January 2014 meeting www.gemini.edu/geminifocus of the American Managing Editor: Peter Michaud Astronomical Society Science Editor: Nancy A. Levenson held in Washington, D.C. Associate Editor: Stephen James O’Meara See the press release Designer: Eve Furchgott / Blue Heron Multimedia that accompanied the images starting on Any opinions, findings, and conclusions or recommendations page 8 of this issue. expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Markus Kissler-Patig Director’s Message 2013: A Successful Year for Gemini! As 2013 comes to an end, we can look back at 12 very successful months for Gemini despite strong budget constraints. Indeed, 2013 was the first stage of our three-year transition to a reduced opera- tions budget, and it was marked by a roughly 20 percent cut in contributions from Gemini’s partner countries.
    [Show full text]
  • Deaths of Stars
    Deaths of stars • Evolution of high mass stars • Where were the elements in your body made? • Stellar remnants • Degenerate gases • White dwarfs • Neutron stars In high mass stars, nuclear burning continues past Helium 1. Hydrogen burning: 10 Myr 2. Helium burning: 1 Myr 3. Carbon burning: 1000 years 4. Neon burning: ~10 years 5. Oxygen burning: ~1 year 6. Silicon burning: ~1 day Finally builds up an inert Iron core Structure of an Old High-Mass Star Why does nuclear fusion stop at Iron? Fusion versus Fission Fusion in massive stars makes elements like Ne, Si, S, Ca, Fe Core collapse • Iron core is degenerate • Core grows until it is too heavy to support itself • Core collapses, density increases, normal iron nuclei are converted into neutrons with the emission of neutrinos • Core collapse stops, neutron star is formed • Rest of the star collapses in on the core, but bounces off the new neutron star If I drop a ball, will it bounce higher than it began? Supernova explosion Core-Collapse Supernova SN 2011fe in M101 (Pinwheel) In 1987 a nearby supernova gave us a close-up look at the death of a massive star An Unusual Supernova • SN 1987A appears to have a set of three glowing rings • Relics of a hydrogen-rich outer atmosphere, ejected by gentle stellar winds from the star when it was a red supergiant. • The gas expanded in a hourglass shape because it was blocked from expanding around the star’s equator either by a preexisting ring of gas or by the orbit of an as-yet- unseen companion star.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]
  • New Instrumentation for the Gemini Telescopes
    June2007 by Joseph Jensen New Instrumentation for the Gemini Telescopes o produce forefront science and continue to (GPI), and the Precision Radial Velocity Spectrometer, compete in the global marketplace of astronomy, (PRVS)–have been designed explicitly to find and study TGemini Observatory must constantly update its extrasolar planets. The Wide-field Fiber Multi-Object instrument suite. A new generation of instruments is now Spectrometer (WFMOS) will provide a revolutionary nearing completion. The Near-Infrared Coronagraphic new capability to study the formation and evolution of Imager (NICI) was recently delivered to Gemini the Milky Way Galaxy and millions of others like it, South, and the near-infrared multi-object spectrograph reaching back to the earliest times of galaxy formation. FLAMINGOS-2 should arrive at Cerro Pachón later WFMOS will also shed light on the mysterious dark this year. Gemini staff members are integrating the energy that is responsible for the accelerating expansion Multi-Conjugate Adaptive Optics (MCAO) system in of the universe, counteracting the force of gravity on Chile now, and the Gemini South Adaptive Optics the largest scales. Finally, the Ground-Layer Adaptive Imager (GSAOI) is already there, waiting to sample Optics (GLAO) capability being explored for Gemini the exquisite images MCAO will deliver. At Gemini North will improve our vision across a large enough North, the visiting mid-infrared echelle spectrograph field of view to explore the first luminous objects in the TEXES will join the Gemini collection again for a few universe, along with practically everything else as well. weeks in semester 2007B as a guest instrument. The new instruments, along with the existing collection of The Aspen instruments build on pathfinding projects facility instruments, will propel Gemini towards the being started now using existing Gemini instruments lofty science goals outlined in Aspen, Colorado nearly like the Near-InfraRed Imager (NIRI) and Near-Infrared four years ago.
    [Show full text]
  • Observational Evidence for Tidal Interaction in Close Binary Systems, Including Short-Period Extrasolar Planets
    Tidal effects in stars, planets and disks M.-J. Goupil and J.-P. Zahn EAS Publications Series, Vol. ?, 2018 OBSERVATIONAL EVIDENCE FOR TIDAL INTERACTION IN CLOSE BINARY SYSTEMS Tsevi Mazeh1 Abstract. This paper reviews the rich corpus of observational evidence for tidal effects, mostly based on photometric and radial-velocity mea- surements. This is done in a period when the study of binaries is being revolutionized by large-scaled photometric surveys that are detecting many thousands of new binaries and tens of extrasolar planets. We begin by examining the short-term effects, such as ellipsoidal variability and apsidal motion. We next turn to the long-term effects, of which circularization was studied the most: a transition period be- tween circular and eccentric orbits has been derived for eight coeval samples of binaries. The study of synchronization and spin-orbit align- ment is less advanced. As binaries are supposed to reach synchroniza- tion before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. We also discuss synchronization in PMS and young stars, and compare the emerging timescale with the circularization timescale. We next examine the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We elaborate on the impact of the pumped eccentricity on the tidal evolution of close binaries residing in triple systems, which may shrink the binary separation. Finally we consider the extrasolar planets and the observational evidence for tidal interaction with their parent stars.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]