Bioinformatic Gene Analysis for Potential Therapeutic Targets Of

Total Page:16

File Type:pdf, Size:1020Kb

Bioinformatic Gene Analysis for Potential Therapeutic Targets Of Xiang et al. J Transl Med (2020) 18:388 https://doi.org/10.1186/s12967-020-02549-9 Journal of Translational Medicine RESEARCH Open Access Bioinformatic gene analysis for potential therapeutic targets of Huntington’s disease in pre-symptomatic and symptomatic stage Chunchen Xiang1†, Shengri Cong1†, Bin Liang2 and Shuyan Cong1* Abstract Background: Huntington’s disease (HD) is a neurodegenerative disorder characterized by psychiatric symptoms, serious motor and cognitive defcits. Certain pathological changes can already be observed in pre-symptomatic HD (pre-HD) patients; however, the underlying molecular pathogenesis is still uncertain and no efective treatments are available until now. Here, we reanalyzed HD-related diferentially expressed genes from the GEO database between symptomatic HD patients, pre-HD individuals, and healthy controls using bioinformatics analysis, hoping to get more insight in the pathogenesis of both pre-HD and HD, and shed a light in the potential therapeutic targets of the disease. Methods: Pre-HD and symptomatic HD diferentially expressed genes (DEGs) were screened by bioinformatics analy- sis Gene Expression Omnibus (GEO) dataset GSE1751. A protein–protein interaction (PPI) network was used to select hub genes. Subsequently, Gene Ontology (GO) enrichment analysis of DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of hub genes were applied. Dataset GSE24250 was downloaded to verify our hub genes by the Kaplan–Meier method using Graphpad Prism 5.0. Finally, target miRNAs of intersected hub genes involved in pre- HD and symptomatic HD were predicted. Results: A total of 37 and 985 DEGs were identifed in pre-HD and symptomatic HD, respectively. The hub genes, SIRT1, SUZ12, and PSMC6, may be implicated in pre-HD, and the hub genes, FIS1, SIRT1, CCNH, SUZ12, and 10 others, may be implicated in symptomatic HD. The intersected hub genes, SIRT1 and SUZ12, and their predicted target miR- NAs, in particular miR-22-3p and miR-19b, may be signifcantly associated with pre-HD. Conclusion: The PSMC6, SIRT1, and SUZ12 genes and their related ubiquitin-mediated proteolysis, transcriptional dysregulation, and histone metabolism are signifcantly associated with pre-HD. FIS1, CCNH, and their related mito- chondrial disruption and transcriptional dysregulation processes are related to symptomatic HD, which might shed a light on the elucidation of potential therapeutic targets in HD. Keywords: Bioinformatics analysis, Biomarkers, miRNAs, Pre-symptomatic HD Background Huntington’s disease (HD) is an inherited neurodegen- erative disorder characterized by progressive motor and *Correspondence: [email protected] cognitive defcits [1]. Te pathogenesis of HD is associ- †Chunchen Xiang and Shengri Cong contributed equally to this work ated with the abnormal accumulation of mutant hunting- 1 Department of Neurology, Shengjing Hospital of China Medical tin (mHtt), a protein with expansion of CAG repeats at University, 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, People’s Republic of China the amino-terminus of wild-type huntingtin (Htt) [2]. Full list of author information is available at the end of the article Currently, efective therapies are lacking for HD [3]. In © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Xiang et al. J Transl Med (2020) 18:388 Page 2 of 10 addition, neuronal degeneration can be observed in pre- was used to analyze the GSE1751 raw expression data. symptomatic patients as early as 20 years prior to diagno- Background correction, quantile normalization, and sis [4, 5], indicating that therapeutic intervention could log2-transformation were performed to create a robust occur several years before the manifestation of clinical multi-array average (RMA) and a log-transformed per- symptoms. fect match. Te Benjamini–Hochberg method was used Prediction results of gene expression profling and to adjust original p-values, and the false discovery rate bioinformatics analysis have become increasingly useful (FDR) procedure was used to calculate fold changes in the diagnosis and therapy of various diseases [6–8], (FC). Te DEGs between symptomatic HD (GSM30530 including those of the nervous system [9]. In addition to to GSM30541) and healthy control (GSM30580 to being used to identify the functional connections among GSM30593) groups and between pre-symptomatic HD genes in an unbiased manner for the in-depth study of (GSM30542 to GSM30546) and healthy control groups biological processes, it can also be used to predict up- were evaluated. Te diferential gene expression thresh- and downstream genes and to explore the relationship old was log2 fold change > 2 and p-value < 0.05. between gene expression and disease phenotypes [10, 11]. Integration of the protein–protein interaction (PPI) MicroRNAs (miRNAs, 19–24 nucleotides in length) network and screening of the hub genes are the most abundant and representative small non- Te Search Tool for the Retrieval of Interacting Gene coding RNAs, which negatively regulate messenger RNA (STRING) database [18] was used to construct the PPI (mRNA) levels by binding to the 3′-untranslated region network of the DEGs in the two groups. Subsequently, [12, 13]. Numerous studies have described dysregulation the Cytoscape [19] software was used to build a PPI of miRNAs in neurodegenerative diseases, indicating that network, employing the Molecular Complex Detection miRNAs may useful in many diseases, including HD [14, (MCODE) plug-in to screen PPI network modules for 15]. these two groups of DEGs. Te cluster method (No. 14) In the present study, the gene expression profle, was used to cluster the modules, and the genes with an GSE1751, from the GEO database was reanalyzed with MCODE score ≥ 2 were selected as hub genes. respect to HD-related diferentially expressed genes (DEGs) in whole blood samples between symptomatic Gene Ontology and KEGG pathway analysis of DEGs HD patients, pre-symptomatic HD (pre-HD) individu- Database for Annotation, Visualization, and Integrated als, and healthy controls using bioinformatics analysis. Discovery (DAVID) (https ://david .abcc.ncifc rf.gov/) [20] Hub genes were selected for deeper functional analysis by is a gene functional annotation tool that is helpful for constructing a protein–protein interaction (PPI) network understanding biological functions. GO (Gene Ontol- and used to predict their related miRNAs. As a result, ogy) function enrichment analysis of the DEGs in the two sets of genes and miRNAs relating to the pathogenesis groups was performed, and those with a p-value < 0.05 of HD were identifed, increasing our understanding of were considered signifcantly enriched. Subsequently, the disease process and shedding light on markers for the the Kyoto Encyclopedia of Genes and Genomes (KEGG) treatment of HD. database was employed to elucidate the KEGG pathways of the hub genes in the two groups. Methods Data acquisition Prediction of the miRNAs of the intersected hub genes Te gene expression profle, GSE1751, from the GEO and their validation database was downloaded (https ://www.ncbi.nlm.nih. Finally, these hub genes were input into Targetscan [21] gov/geo, May 18, 2017). GSE1751 is based on the GPL96 (https ://www.targe tscan .org/vert_71/) and miRDB [22] platform (Afymetrix Human Genome U133 Plus 2.0 (https ://www.mirdb .org/) to predict their possible miR- Array) and contains a total of 31 peripheral whole blood NAs. Te intersection portion of the two databases was samples, including 12 symptomatic HD cases, 5 pre- selected as our predicted miRNAs. Moreover, based on symptomatic HD cases, and 14 healthy controls [16]. the information in the individual MCODE modules, the People who are carriers of the HD mutation but have no node with the highest score was selected as the hub gene clinically present signs or symptoms are considered pre- in GSE1751. Each hub gene was also found in the inde- symptomatic cases [3]. pendent datasets (dataset GSE24250, HD samples n = 8, and HC samples n = 6) based on the downloaded raw Screening of diferentially expressed genes (DEGs) data fles, including the gene expression level, survival Te R package, “limma” (https ://cran.r-proje ct.org/), time, and survival state. Expression levels were divided obtained from https ://www.bioco nduct or.org [17], into two groups, the HD group and the control group, Xiang et al. J Transl Med (2020) 18:388 Page 3 of 10 according to X-tile [23]. Te Kaplan–Meier method was p-value: 6.01E−06), and viral transcription (Fold Enrich-
Recommended publications
  • Genetic Variations in the PSMA6 and PSMC6 Proteasome Genes Are Associated with Multiple Sclerosis and Response to Interferon‑Β Therapy in Latvians
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 478, 2021 Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians NATALIA PARAMONOVA1, JOLANTA KALNINA1, KRISTINE DOKANE1, KRISTINE DISLERE1, ILVA TRAPINA1, TATJANA SJAKSTE1 and NIKOLAJS SJAKSTE1,2 1Genomics and Bioinformatics, Institute of Biology of The University of Latvia; 2Department of Medical Biochemistry of The University of Latvia, LV‑1004 Riga, Latvia Received July 8, 2020; Accepted December 8, 2020 DOI: 10.3892/etm.2021.9909 Abstract. Several polymorphisms in genes related to the Introduction ubiquitin‑proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune Multiple sclerosis (MS) is a lifelong demyelinating disease of diseases. Our previous study reported the association the central nervous system. The clinical onset of MS tends to between multiple sclerosis (MS) and the PSMA3‑rs2348071 be between the second and fourth decade of life. Similarly to polymorphism in the Latvian population. The current study other autoimmune diseases, women are affected 3‑4 times more aimed to evaluate the PSMA6 and PSMC6 genetic variations, frequently than men (1). About 10% of MS patients experience their interaction between each other and with the rs2348071, a primary progressive MS form characterized by the progres‑ on the susceptibility to MS risk and response to therapy in sion of neurological disability from the onset. In about 90% the Latvian population. PSMA6‑rs2277460, ‑rs1048990 and of MS patients, the disease undergoes the relapse‑remitting PSMC6‑rs2295826, ‑rs2295827 were genotyped in the MS MS course (RRMS); in most of these patients, the condition case/control study and analysed in terms of genotype‑protein acquires secondary progressive course (SPMS) (2).
    [Show full text]
  • O-Glcnacylation Regulates the Stability and Enzymatic Activity of the Histone Methyltransferase EZH2
    O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2 Pei-Wen Loa, Jiun-Jie Shieb, Chein-Hung Chena, Chung-Yi Wua, Tsui-Ling Hsua, and Chi-Huey Wonga,1 aGenomics Research Center, Academia Sinica, Taipei 115, Taiwan; and bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan Contributed by Chi-Huey Wong, May 16, 2018 (sent for review February 1, 2018; reviewed by Michael D. Burkart, Benjamin G. Davis, and Gerald W. Hart) Protein O-glycosylation by attachment of β-N-acetylglucosamine maintenance and differentiation in embryonic stem cells (14, 15). (GlcNAc) to the Ser or Thr residue is a major posttranslational It was suggested that O-GlcNAcylation might play an important glycosylation event and is often associated with protein folding, role in the regulation of PRC1-mediated gene expression, and stability, and activity. The methylation of histone H3 at Lys-27 along this line the O-GlcNAcylation of EZH2 at S76 in the PRC2 catalyzed by the methyltransferase EZH2 was known to suppress complex was reported to stablize EZH2 in our previous study (16). gene expression and cancer development, and we previously The PRC2 complex is composed of Enhancer of zeste 2 (EZH2), reported that the O-GlcNAcylation of EZH2 at S76 stabilized Suppressor of Zeste 12 (Suz12), Extraembryonic endoderm (EED), EZH2 and facilitated the formation of H3K27me3 to inhibit tumor AE binding protein 2 (AEBP2), and retinoblastoma binding protein suppression. In this study, we employed a fluorescence-based method 4/7 (RBBP4/7) (17, 18). Within the PRC2 complex, EZH2 catalyzes the di- and trimethylation of histone H3 at lysine 27 (K27) to form of sugar labeling combined with mass spectrometry to investigate H3K27me2/3 to regulate embryonic and cancer development EZH2 glycosylation and identified five O-GlcNAcylation sites.
    [Show full text]
  • The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
    cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways.
    [Show full text]
  • NPI-0052 and Γ-Radiation Induce a Synergistic Apoptotic Effect In
    Frisira et al. Cell Death and Disease (2019) 10:785 https://doi.org/10.1038/s41419-019-2026-y Cell Death & Disease ARTICLE Open Access NPI-0052 and γ-radiation induce a synergistic apoptoticeffectinmedulloblastoma Eleni Frisira1, Fatima Rashid1,SwastinaNathVarma2,SaraBadodi1, Valentine Ayodele Benjamin-Ombo1, David Michod 2 and Maria Victoria Niklison-Chirou 1 Abstract Medulloblastoma (MB) is the most common malignant solid paediatric brain tumour. The standard treatment for MB is surgical resection of the tumour, radiation and chemotherapy. This therapy is associated with high morbidity and adverse side effects. Hence, more targeted and less toxic therapies are vitally needed to improve the quality of life of survivors. NPI-0052 is a novel proteasome inhibitor that irreversibly binds the 20S proteasome subunit. This compound has anti-tumour activity in metastatic solid tumours, glioblastoma and multiple myeloma with a good safety profile. Importantly, NPI-0052 has a lipophilic structure and can penetrate the blood–brain barrier, making it a suitable treatment for brain tumours. In the present study, we performed an in silico gene expression analysis to evaluate the proteasome subunit expression in MB. To evaluate the anticancer activity of NPI-0052, we used a range of MB patient- derived MB cells and cell lines. The synergistic cell death of NPI-0052 with γ-radiation was evaluated in tumour organoids derived from patient-derived MB cells. We show that high expression of proteasome subunits is a poor prognostic factor for MB patients. Also, our preclinical work demonstrated that NPI-0052 can inhibit proteasome activity and activate apoptosis in MB cells. Moreover, we observe that NPI-0052 has a synergistic apoptotic effect with γ-radiation, a component of the current MB therapy.
    [Show full text]
  • Leukemia and Lymphoma: Molecular and Therapeutic Insights
    This is a free sample of content from Leukemia and Lymphoma: Molecular and Therapeutic Insights. Click here for more information on how to buy the book. Index A PRPF8, 307 AA. See Aplastic anemia SF3B1, 307 ABL1, 347, 368–369 SRSF2, 307 ABL2, 369 SUZ12, 120 ABT-199, 368 TET2, 117, 119, 121, 305 ABT-731, 181 U2AF1, 307 ACIN1, 374 U2AF2, 307 Acute lymphocytic leukemia (ALL). See also B- ZRSR2, 307 progenitor acute lymphoblastic therapeutic targeting leukemia; T-cell acute lymphoblastic combination therapy, 123–124 leukemia histone epigenetic mechanisms, 121, 123 epidemiology specific epigenetic mechanisms, 121 adult, 32–33 induced pluripotent stem cell models, 257–259 pediatric, 29–30 leukemia stem cell studies. See Leukemia stem cell Acute megakaryoblastic leukemia (AMKL) model children without Down syndrome, 326–329 mouse models. See Mouse models Down syndrome association pathophysiology, 295–296 clinical and biological features, 324–325 recurrent mutations GATA1 CEBPA, 301–302 cooperation with trisomy genes, 323–324 GATA2, 302 mutations, 323 NPM1, 300–301 genetic susceptibility, 321–322 RUNX1, 301 transforming mutation acquisition, 325–326 signal transduction mutations overview, 319–320 CBL, 303 RNA-binding proteins, 153 FLT3, 302 Acute myeloid leukemia (AML) KIT, 302–303 chromosomal abnormalities KRAS, 303 core binding factor rearrangements, 296–297 NF1, 303–304 KMT2A rearrangements, 298–299 NRAS, 303 rare translocations, 299–300 PTPN11, 303 clonal hematoipoiesis, 75 therapeutic targeting epidemiology CD123, 91–92 adult, 31–32 CD33,
    [Show full text]
  • Rabbit Anti-TAF1C/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-TAF1C/FITC Conjugated antibody SL24053R-FITC Product Name: Anti-TAF1C/FITC Chinese Name: FITC标记的TATA盒Binding protein相关因子TAF1C抗体 RNA polymerase I-specific TBP-associated factor 110 kDa; SL1; Taf1c; TAF1C_MOUSE; TAFI110; TAFI95; TATA box binding protein associated factor 1C; TATA box-binding protein-associated factor 1C; TATA box-binding protein-associated Alias: factor RNA polymerase I subunit C; TBP associated factor 1C; TBP associated factor RNA polymerase I 95 kDa; TBP associated factor, RNA polymerase I, 110-KD; TBP- associated factor 1C; Transcription initiation factor SL1/TIF-IB subunit C. Organism Species: Rabbit Clonality: Polyclonal React Species: ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 95kDa Form: Lyophilized or Liquid Concentration: 2mg/1ml immunogen: KLHwww.sunlongbiotech.com conjugated synthetic peptide derived from mouse TAF1C Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Initiation of transcription by RNA polymerase I requires the formation of a complex Product Detail: composed of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs) specific for RNA polymerase I.
    [Show full text]
  • The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiationᰔ† Diego Pasini,1 Adrian P
    MOLECULAR AND CELLULAR BIOLOGY, May 2007, p. 3769–3779 Vol. 27, No. 10 0270-7306/07/$08.00ϩ0 doi:10.1128/MCB.01432-06 Copyright © 2007, American Society for Microbiology. All Rights Reserved. The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiationᰔ† Diego Pasini,1 Adrian P. Bracken,1 Jacob B. Hansen,2 Manuela Capillo,3,4 and Kristian Helin1* Centre for Epigenetics and BRIC, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark1; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark2; Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy3; and Institute of Molecular Oncology of the Italian Foundation for Cancer Research, Via Adamello 16, 20139 Milan, Italy4 Received 3 August 2006/Returned for modification 10 October 2006/Accepted 22 February 2007 Downloaded from Polycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos. Here, we demonstrate that Suz12؊/؊ mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12؊/؊ ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation-specific genes. Moreover, Suz12؊/؊ ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which despite an increase in H3K27me3 levels is not always http://mcb.asm.org/ sufficient to prevent transcriptional activation.
    [Show full text]
  • Automethylation of PRC2 Promotes H3K27 Methylation and Is Impaired in H3K27M Pediatric Glioma
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma Chul-Hwan Lee,1,2,7 Jia-Ray Yu,1,2,7 Jeffrey Granat,1,2,7 Ricardo Saldaña-Meyer,1,2 Joshua Andrade,3 Gary LeRoy,1,2 Ying Jin,4 Peder Lund,5 James M. Stafford,1,2,6 Benjamin A. Garcia,5 Beatrix Ueberheide,3 and Danny Reinberg1,2 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 3Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA; 4Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/ EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring inde- pendently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2.
    [Show full text]
  • The EZH1–SUZ12 Complex Positively Regulates the Transcription of NF-Κb
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 2343-2353 doi:10.1242/jcs.185546 RESEARCH ARTICLE The EZH1–SUZ12 complex positively regulates the transcription of NF-κB target genes through interaction with UXT Shuai-Kun Su, Chun-Yuan Li, Pin-Ji Lei, Xiang Wang, Quan-Yi Zhao, Yang Cai, Zhen Wang, Lianyun Li* and Min Wu* ABSTRACT zeste 2 polycomb repressive complex 2 subunit (EZH2) (Shen et al., Drosophila Unlike other members of the polycomb group protein family, EZH1 2008). EZH2 mimics the function of E(Z) in and is the has been shown to positively associate with active transcription on a main methyltransferase for H3K27 in mammalian cells (Shen et al., genome-wide scale. However, the underlying mechanism for this 2008). However, controversial reports exist about EZH1, which behavior still remains elusive. Here, we report that EZH1 physically means its activities have been a puzzle for a long time. Compared interacts with UXT, a small chaperon-like transcription co-activator. with EZH2, EZH1 has lower enzymatic activity, suggesting it might UXT specifically interacts with EZH1 and SUZ12, but not EED. have distinct functions (Margueron et al., 2008). Several groups Similar to upon knockdown of UXT, knockdown of EZH1 or SUZ12 reported that EZH1 methylates histone H3K27 and compensates for through RNA interference in the cell impairs the transcriptional the functions of EZH2 upon its absence (Bae et al., 2015; Hidalgo activation of nuclear factor (NF)-κB target genes induced by TNFα. et al., 2012; Shen et al., 2008). Recently, Mousavi et al.
    [Show full text]
  • Cross-Cohort Analysis Identifies a TEAD4– MYCN Positive Feedback Loop As the Core Regulatory Element of High-Risk Neuroblastoma
    Cross-Cohort Analysis Identifies a TEAD4– MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rajbhandari, Presha et al. “Cross-Cohort Analysis Identifies a TEAD4–MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma.” Cancer Discovery 8, 5 (March 2018): 582–599 © 2018 AACR As Published http://dx.doi.org/10.1158/2159-8290.CD-16-0861 Publisher American Association for Cancer Research Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/117503 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cancer Manuscript Author Discov. Author manuscript; Manuscript Author available in PMC 2018 August 01. Published in final edited form as: Cancer Discov. 2018 May ; 8(5): 582–599. doi:10.1158/2159-8290.CD-16-0861. Cross-cohort analysis identifies a TEAD4 ↔ MYCN positive- feedback loop as the core regulatory element of high-risk neuroblastoma Presha Rajbhandari1,2,$, Gonzalo Lopez1,3,$, Claudia Capdevila1, Beatrice Salvatori1, Jiyang Yu1,#, Ruth Rodriguez-Barrueco4,5, Daniel Martinez3, Mark Yarmarkovich3, Nina Weichert-Leahey6, Brian J. Abraham7, Mariano J Alvarez1, Archana Iyer1, Jo Lynne Harenza3, Derek Oldridge3, Katleen De Preter8, Jan Koster9, Shahab Asgharzadeh10,11, Robert
    [Show full text]
  • Alu Elements in ANRIL Non-Coding RNA at Chromosome 9P21 Modulate Atherogenic Cell Functions Through Trans-Regulation of Gene Networks
    Alu Elements in ANRIL Non-Coding RNA at Chromosome 9p21 Modulate Atherogenic Cell Functions through Trans-Regulation of Gene Networks Lesca M. Holdt1,2,3, Steve Hoffmann1,4, Kristina Sass2, David Langenberger1,4, Markus Scholz1,5, Knut Krohn1,6, Knut Finstermeier1,2, Anika Stahringer2,3, Wolfgang Wilfert2,3, Frank Beutner1,2,7, Stephan Gielen1,7, Gerhard Schuler1,7, Gabor Ga¨bel8, Hendrik Bergert8, Ingo Bechmann9, Peter F. Stadler1,4,10,11, Joachim Thiery1,2, Daniel Teupser1,2,3* 1 LIFE – Leipzig Research Center for Civilization Diseases, Universita¨t Leipzig, Leipzig, Germany, 2 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 3 Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany, 4 Transcriptome Bioinformatics Group and Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany, 5 Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany, 6 Interdisciplinary Center for Clinical Research, University Leipzig, Leipzig, Germany, 7 Department of Internal Medicine/Cardiology, Heart Center, University Leipzig, Leipzig, Germany, 8 Department of General, Thoracic, and Vascular Surgery, University Dresden, Dresden, Germany, 9 Institute of Anatomy, University Leipzig, Leipzig, Germany, 10 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, 11 Santa Fe Institute, Santa Fe, New Mexico, United States of America Abstract The chromosome 9p21 (Chr9p21) locus of coronary artery disease has been identified in the first surge of genome-wide association and is the strongest genetic factor of atherosclerosis known today. Chr9p21 encodes the long non-coding RNA (ncRNA) antisense non-coding RNA in the INK4 locus (ANRIL). ANRIL expression is associated with the Chr9p21 genotype and correlated with atherosclerosis severity.
    [Show full text]
  • Low Dose and Low Dose-Rate Radiation Effects and Models
    Forty-Fourth Annual Meeting Program Low Dose and Low Dose-Rate Radiation Effects and Models April 14–15, 2008 Bethesda North Marriott Hotel & Conference Center 5701 Marinelli Road North Bethesda, MD 20852 On the cover: • top: Two nuclei have each been “hit” by three alpha particles from a microbeam and show activated γH2AX foci at the site of the traversal. • center: Chromosome painting technology makes it possible to identify each human chromosome and characterize the number, location and types of aberrations produced by ionizing radiation. • bottom: Measuring the frequency of micronuclei provides a rapid measure of cytogenetic damage, which increases as a function of radiation dose. Introduction Low Dose and Low Dose-Rate Radiation Effects and Models Forty-Fourth Annual Meeting of the National Council on Radiation Protection and Measurements (NCRP) Potential human health effects of low doses of ionizing models of the biological responses and human health radiation such as those experienced in occupational impacts of exposure to low doses of radiation. The and medical exposures are of great contemporary meeting will feature presentations by international interest. Considerable debate exists over the applica- experts on the topics of (1) molecular, cellular, tissue, bility of a linear-nonthreshold model for characterizing and laboratory animal studies on the effects of expo- the biological responses and health effects of expo- sure to low dose and low dose-rate radiation, (2) sure to low radiation doses, and alternative models results of epidemiological studies on human health have been proposed. A related subject of interest and effects of low radiation doses in occupational, medical debate is the effect of the rate of delivery of radiation and other exposure scenarios, (3) potential impacts of doses on the biological and health outcomes of expo- these findings on future regulatory guidance and pub- sure.
    [Show full text]