arXiv:1510.06816v1 [math.CO] 23 Oct 2015 Cuin laent enfrSbryhstidbtbe un been but tried has Seberry Jennifer note please (Caution: a ein,Otooa arcs rtnMtie;Butson- Matrices; Cretan Matrices; Orthogonal Designs, Rao elements h quaternions the integer o-bla,admyb rte nadtv rmultiplicati or elements additive elements, in real written have may be may and non-abelian, Introduction 1 ulse hc aent ehv u oehrti oet ma to note this together h put papers have We hand all. other t not. the read have on not which have ignored, published thus Authors papers disorganized. and very results.) key-words is finished half subject for this on Apolgogies co-authors. as named ∗ § ‡ † colo optn n nomto ehooy Universit Technology, Information and Computing of 92121 School CA, Jolla, La CCR, C1 o 04 ohaTe,C 25 Email: 92252 CA Tree, Joshua 3024, Box 1, 92121 HC CA, Jolla, La CCR, Keywords efis oeta h arcsw td eehv lmnsfro elements have ol here from study we authors matrices refe the the to of that point work note but journal first literature from We the compiled all is work of This examples give not do We Email: nGnrlzdHdmr arcsand Matrices Hadamard Generalized On rde .Brock W. Bradley o neddt epbihdbtaalbefracia reas archival undocumented. for available fact but in published but be referenced, to know, intended we not as far as and, and egv oevr neetn arcswihaeorthogonal are which matrices interesting very some give We jennifer { ∈ 1 ,j k j, i, i, , : ieec arcs eeaie/eeaie aaadMa Hadamard Generalised/Generalized Matrices, Difference [email protected] − { 1 and 1 , utrin rohriea specified. as otherwise or quaternions − ieec Matrices: Difference ,i i, ,j ,i k, j, i, 2 − = ∗ 1 oetCompton Robert , } n enfrSeberry Jennifer and nee elements integer , 2 coe 6 2015 26, October = { ∈ j 2 1 = , − k 2 1 } − = 1 elements , [email protected] 1 ijk , { ∈ − = a † fWlogn,NW22,Australia. 2522, NSW Wollongong, of y S + awc eLauney de Warwick , n 1 } ≤ S b i ib, , § ( ,elements 1, a ent htteliterature the that note We aaadMtie;05B20. Matrices; Hadamard entto.Tematrices The notation. ve bet otc h persons the contact to able 2 + eltrtr nterown their on literature he − = Z ib v encamdt be to claimed been ave ecswihmyhelp. may which rences + ) ons. rus bla and abelian groups, m 1 6 icso paper. of pieces d ete cesbeto accessible them ke } , j ( n hsnt is note This vrgroups over c hroso unity, of roots th { ∈ + id 1 rcs Bhaskar trices; ,i i, , ) , ,b ,d, c, b, a, 2 − = ‡ 1 } , We use the notations B⊺ for the transpose of G, BH for the group transpose, BC for the complwx conjugate of B⊺ and BV for the quaternion conjugate transpose. In all of these matrices the inner product of distinct rows a and bisa -b or a.b−1 depending on whether the group is written in additive or multiplicative form.

LEXICON 1 ⎡11 1 1 ⎢ ⎤ ⎢ ⎥ ⎢1 1 −1 −1⎥ ⊺ 1. classical orthogonality: H = ⎢ ⎥ ; HH = 4I4. ⎢1 −1 1 −1⎥ ⎢ ⎥ ⎢ ⎥ 1 −1 −1 1 ⎥ ⎣ ⎦ 2. group orthogonality:

11 1 1 ⎡ ⎤ ⎢ ⎥ ⎢1 a b ab⎥ H G = ⎢ ⎥ ; GG = group I4 = Z2 × Z2 I ⎢1 b ab a ⎥ ( ) ( ) ⎢ ⎥ ⎢ ab a b ⎥ ⎢1 ⎥ ⎣ ⎦ orthogonality is because the inner product of distinct rows is the whole group the −1 −1 same number of times. The inner product is gi1g 1 ,...,ging { j jn } H GG = 5Z4I20

00 00 00 00 000 0 0 00 0 0 00 0 00 00 22 22 444 4 1 11 1 3 33 3 00 00 33 33 111 1 4 44 4 2 22 2 00 00 44 44 333 3 2 22 2 1 11 1 02 34 34 01 401 2 0 12 3 1 23 4 02 34 41 30 024 1 1 30 2 2 41 3 02 34 03 14 142 0 2 03 1 3 14 2 02 34 10 43 210 4 3 21 0 4 32 1 04 13 40 12 130 2 3 14 2 0 43 2 04 13 02 41 012 3 4 32 1 4 20 3 04 13 14 20 321 0 1 23 4 3 02 4 04 13 21 04 203 1 2 41 3 2 34 0 01 42 01 23 314 2 0 43 2 4 13 0 01 42 13 02 432 1 4 20 3 3 40 1 01 42 20 31 123 4 3 02 4 1 04 3 01 42 32 10 214 3 2 34 0 0 31 4 03 21 12 34 043 2 4 13 0 2 03 1 03 21 24 13 420 3 3 40 1 3 21 0 03 21 31 42 302 4 1 04 3 0 12 3 03 21 43 21 234 0 0 31 4 1 30 2

Example of GH 20,Z4 . ( )

2 3. Butson orthogonality: [AB1962, WCRN2007]

⎡1 1 1 ⎤ ⎢ 2⎥ C 3 2 U = ⎢1 ω ω ⎥ ; BB = 3I3, w = 1, 1 + w + w = 0 ⎢ 2 ⎥ ⎢1 ω ω ⎥ ⎢ ⎥ ⎣ ⎦ orthogonality depends on the fact that the n nth roots of unity add to zero.

4. complex orthogonality (A):

1 1 C A = ; BB = 2I2, i −i orthogonality is independent of the internal elements.

5. complex orthogonality (B):

i 1 H B = ; BB = 2I2, 1 i

BH is B transposed complex conjugate.

6. quaternion orthogonality: [SFAWW]

1 k Q Q V = ; VV = ZI2, i =−i. i j i, j, k are quaternions.

LEXICON 2 is an orthogonal matrix of order n with entries 1, -1. [WSW]

1. A Cretan matrix [JSNB2015b] is an orthogonal matrix with entries ≤ 1. They are also referred to in the literature as Fermat, Hadamard, Mersenne, Euler, Bele- vitch and conference matrices.

2. A difference matrix [DJ1980] of size v × b has entries from a group. The inner product a b−1 of any pair of distinct rows is a constant number of each of the elements of⋅ the group.

⎡000000⎤ ⎢ ⎥ ⎢001221⎥ ⎢ ⎥ ⎢010122⎥ ⎢ ⎥ GH ,Z3 ⎢ ⎥ is a 6 difference matrix ⎢021012⎥ ( ) ⎢ ⎥ ⎢022101⎥ ⎢ ⎥ ⎢012210⎥ ⎢ ⎥ ⎣ ⎦ 3. A generalized/generalized Hadamard matrix [AB1962, AB1963] is v v difference matrix. ×

3 4. A symmetric balanced incomplete : SBIBD[] is the incidence matrix of a v, k, λ -design or v, k, λ -configuration (Ryser [Ryser]): it is a v v matrix with( entries) 0, 1, where( 1 occurs) k times in each row and column and the× inner product of any distinct pairs of rows and columns is λ.

5. A balanced incomplete block design: BIBD[JRSMY1992, WSW] A BIBD, v, k, r, k, λ -design is v b matrix with entries 0, 1, where 1 occurs r times in each row( and k times) in each× column and the inner product of any distinct pairs of rows is λ.

6. A Bhaskar Rao Design[WD1989] design has entries from a group and zero so that the inner product a b of any pair of distinct rows is a constant number of each of the elements of the group.⋅ The underlying design where the group elements are replaced by 1 is the incidence matrix of an BIBD or balanced incomplete block design.

7. Butson-Hadamard Matrices [AB1962, AB1963] are generalized Hadamard matrices where the group is the nth roots of unity.

8. Quaternion orthogonal matrices [SFAWW] are generalized Hadamard matri- ces where the group is the quaternions.

1.1 Other Constructions Warwick de Launey’s research featured multiple articles on generalized Hadamard ma- trices [WD1983, WD1984b, WD1986a, WD1987b, WD1989, WDL1992], articles with Ed Dawson [WDLED1992, WDLED1994], Charles J. Colbourn [CCWDL1996], Rob Craigen [RCWDL2009]. Other authors who have multiple articles include Jennifer Seberry [JRS1979b, JRS1980a, JRS1986] and with Geramita [AGJS1979], Yamada [JRSMY1992], W.D. Wallis and Anne Street [WSW], and Balonin [JSNB2015b]. Ferenc Sz¨oll˝osi [FS2010b, FS2011a, FS2012a, FS2012b] and with Lampio and Ostergard¨ [PLFSPO2012], Matolcsi [MMFS2007]. Gennian Ge [GG2005] and with Miao and Sun [GGYM2010]. Dieter Jungnickel [DJ1980] and with Grams [DJGG1986]. For other constructions and additional reading see: Aydın and Altay [CABA2013], Camp and Nicoara [WCRN2007], Colbourn and Kreher [CCDK1996], Dawson [JED1985], Delsarte and Goethals [PDJG1969], Drake [DD1979], Egiazaryan [KE1984], Evans [AE1987], Hadamard [JH1893], Harada, Lam, Munemasa and Tonchev [MHCL2010], Hayden [JH1997], Hiramine [YH2014] and with Suetake [YHCS2013], Horadam [KH2000], Karlsson [BK2009, BK2011], Lampio and ´’Osterg˙ard [PLPO2011], Liu [ZL1977], Sharma and Sookoo [BSNS2010], Shrikhande [SS1964], Deborah Street [DS1979], Todorov [DT2012], Winterhof [AW2000], and Zhang [YZ2010] and with Duan, Lu, and Zheng [YZLD2002]. Another useful reference is La-Jolla

4 2 A Summary of Known Generalized Hadamard Matrices over GH(n; Z6)

Table 1: Table of Existence of GH n; Z6 2 ≤ n ≤ 52 ( ) n Comment n Comment n Comment 2 H 2; Z2 exists 19 ? 36 H 36; Z2 exists ( ) ( ) 3 GH 3; Z3 exists 20 10 2 37 ? ( ) × 4 H 4; Z2 exists 21 GH 7; Z3 (3.1) 38 ? 5 NE( ) 22 ? ( ) 39 ? 6 GH 6; Z3 exists 23 NE 40 10 4 ( ) × 7 GH 7; Z6 (3.1) 24 H 24; Z2 exists 41 NE ( ) ( ) 8 H 8; Z2 exists 25 ? 42 7 6 9 3 ( 3 ) 26 ? 43 ? × × 10 GH 10; Z3 (3.2) 27 3 3 3 44 H 44; Z2 exists ( ) × × ( ) 11 NE 28 H 28; Z2 exists 45 NE ( ) 12 H 12; Z2 exists 29 NE 46 ? 13 NE( ) 30 10 3 47 NE × 14 7 2 31 ? 48 H 48; Z2 exists × ( ) 15 NE 32 H 32; Z2 exists 49 7 7 ( ) × 16 H 12; Z2 exists 33 NE 50 ? ( ) 17 NE 34 GW 17, 16, 15; Z3 exists 51 ? ( ) 18 3 3 2 35 NE 52 H 52; Z2 exists × × ( ) 3 Some unpublished interesting matrices

3.1 Matrix GH(7; Z6) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⎡ ⎤ ⎡ ⎤ ⎢ − 2 ⎥ ⎢ − 2 ⎥ ⎢ 1 ω ω ω ω 1 1 ⎥ ⎢ 1 ω 1 ω ω ω 1 ⎥ ⎢ − 2 ⎥ ⎢ − 2 ⎥ ⎢ 1 ω ω ω 1 ω 1 ⎥ ⎢ 1 1 ω 1 ω ω ω ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 1 ω− ω ω 1 1 ω ⎥ ⎢ 1 ω − 1 ω 1 ω ω ⎥ ⎢ ⎥ and ⎢ ⎥ ⎢ 2 − ⎥ ⎢ 2 − ⎥ ⎢ 1 ω 1 1 ω ω ω ⎥ ⎢ 1 ω ω 1 ω 1 ω ⎥ ⎢ 2 − ⎥ ⎢ 2 − ⎥ ⎢ 1 1 ω 1 ω ω ω ⎥ ⎢ 1 ω ω ω 1 ω 1 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 2 − ⎥ ⎢ 2 − ⎥ ⎢ 1 1 1 ω ω ω ω ⎥ ⎢ 1 1 ω ω ω 1 ω ⎥ ⎣ − ⎦ ⎣ − ⎦

3.2 Matrix GH(10; Z6) Let X, Y , Z, W be the 5 5 circulant matrices with first rows: × 1, ω, ω2, ω2, ω 1, ω, ω2, ω2, ω −1, ω2, ω, ω, ω2 1, ω2, ω2, ω, ω2 − − − −

5 Then X Y WZ is a GH 10; Z6 . ( ) 3.3 Circulant matrices

1. First rows of GH 20; Z4 from 4 circulant matrices ( ) ab b e e e, b a e e a, e ab e e b, ab a e e a.

2. Let C = GW 17, 16; Z3 then the following is a GH 34; Z6 ( ) ( ) I C I C + ∗ − ∗ I C I C − − −

3. First rows of GH 28; Z4 from 4 circulant matrices ( ) e a a ab a ab ab , e b b ab b ab ab , e a a b a b b , e ab b ab a a b .

4. Brock’s vectors of length 7 - these work but a second example was corrupted. Gives GH 21; Z3 . ( ) 1121121 0012210 1012210 0012210 0100001 2012210 1012210 2012210 2220022

5. Brock’s vectors of length 13 - How much works? Part of GH 39; Z3 . [AB1962, AB1963, WCRN2007, RCWDL2009] ( )

1200020020002 0011202202110 1011202202110 0011202202110 0222121121222 2011202202110 1011202202110 2011202202110 2100111111001

2 6. Let C0, C1, C2 be the cubic residues classes of 13 then with e, ω, ω the elements of Z3 the first row for 13 is

2 2 2 eI ω C0 eC1 eC2 , eI eC0 ωC1 ω C2 , ωI eC0 ωC1 ω C2 . + + + + + + + + +

hence if q,s,t = a, b, ab from Z2 Z2 all { } { } × ⊺ D e,q,s,t D e,q,s,t = 2e 2a 2b 2ab ( ) ( ) + + + Cubic residues of 13 C0 = 1, 5, 8, 12 C1 = 2, 3, 10, 11 C2 = 4, 6, 7, 9 . { } { } { }

6 C0 C0 = C1 2C2 4I + + + C0 C1 = C0 2C1 C2 = C1 CO + + + + C0 C2 = 2CO C1 C2 = C2 CO + + + + So Brock’s 3 13 matrix is 2× 2 2 ωI ω C0 eC1 eC2 eI eC0 ωC1 ω C2 ωI eC0 ω C2 + 2 + 2 + 2 + + + 2 2 + + 2 eI ω C0 ω C1 ω C2 eI eC0 ωC1 ω C2 ω I eC0 ωC1 ω C2 + + +2 2 + + + 2 2 + + + ωI eC0 ωC1 ω C2 ω I eC0 ωC1 ω C2 ω I ωC0 ωC1 ωC2 + + + + + + + + + Other Strange Squares 1. circ , 1, , 1, 0, , , 1, 1, 1, 0, 1, 0 (∗ − − − ) is orthogonal if ’*’ is ignored. 2. 2 2 circ 0, a, e, ab, 0, e, e, ab , a, ab , 0, ab, 0 ( ) is the GW 13, 9, 6; S3 . ( ) 3. Let C = GW 17, 16; Z3 then the following is a GH 34; Z6 ( ) ( ) I C I C + ∗ − ∗ I C I C − − − 4 Acknowledgements

The authors wish to thank Professor Rob Craigen, University of Manitoba, for his valu- able comments. The authors also wish to sincerely thank Mr Max Norden (BBMgt) (C.S.U.) for his work preparing the layout and LaTeX version.

References

[1] Cafer Aydın and Bilal Altay. Domain of generalized difference matrix B(r,s) on some Maddox’s spaces. In: Thai J. Math. 11.1 (2013), pp. 87–102. [2] B.W. Brock. Hermitian congruence and the existence and completion of generalized Hadamard matrices. In: J. Combin. Theory Series A 49 (1988), pp. 233–261. [3] A.T. Butson. Generalized Hadamard matrices In: Proc. Amer. Math. Soc. 3 (1962), pp. 894–898. [4] A.T. Butson. Relations among generalized Hadamard matrices, relative difference sets, and maximal length recurring sequences. In: Canad. J. Math. 15 (1963), pp. 42–48.

7 [5] W. Camp and R. Nicoara. “Subfactors and Hadamard Matrices”. In: ArXiv e-prints (2007). arXiv: 0704.1128 [math.OA].

[6] Charles J. Colbourn and Donald L. Kreher. Concerning difference matrices. In: Des. Codes Cryptogr. 9.1 (1996). Second Upper Michigan Workshop on Designs, Codes and Geometries (Houghton, MI, 1994), pp. 61–70.

[7] Charles J. Colbourn and Warwick de Launey. Difference Matrices. In: The CRC Handbook of . Ed. by C.J. Colbourn and J.H. Dinitz. Boca Raton, FL: CRC Press, 1996. Chap. IV.11, pp. 287–297.

[8] Rob Craigen and Warwick De Launey. Generalized Hadamard matrices whose trans- poses are not generalized Hadamard matrices. In: J. Combinatorial Designs 17.6 (2009), pp. 456–458.

[9] J.E. Dawson. A construction for generalized Hadamard matrices GH 4q,EA q . In: J. Statist. Plan. Inf. 11 (1985), pp. 103–110. ( ( ))

[10] P. Delsarte and J.M. Goethals. Tri-weight codes and generalized Hadamard matrices. In: Inf. and Contr. (1969), pp. 196–206.

[11] D.A. Drake. Partial λ-geometries and generalised Hadamard matrices. In: Canadian J. Math. 31 (1979), pp. 617–627.

[12] K.O. Egiazaryan. n-dimensional generalized Hadamard matrices. In: Akad. Nauk Armyan. SSR Dokl. 78.5 (1984). In Russian. Armenian summary., pp. 203–207.

[13] Anthony B. Evans. Difference matrices, generalized Hadamard matrices and ortho- morphism graphs of groups. In: JCMCC 1 (1987), pp. 97–105.

[14] Gennian Ge. On g, 4; 1 -difference matrices. In: 301.2–3 (2005), pp. 164 –174.( )

[15] Gennian Ge, Ying Miao, and Xianwei Sun. Perfect difference families, perfect dif- ference matrices, and related combinatorial structures. In: J. Combin. Designs 18.6 (2010), pp. 415–449.

[16] A. V. Geramita and J. Seberry. Orthogonal Designs: Quadratic forms and Hadamard matrices. New York-Basel: Marcel Dekker, 1979. 460 pp.

[17] J. Hadamard. Resolution d’une question relative aux determinants. In: Bull. des Sciences Mathematiques 17 (1893), pp. 240–246

[18] Masaaki Harada, Clement Lam, A. Munemasa, and Vladimir D. Tonchev. Classifica- tion of generalized Hadamard matrices H 6, 3 and quaternary Hermitian self-dual codes of length 18. In: ArXiv e-prints (2010).( ) Journal reference: Electronic J. Com- bin. 17 (2010), R171. arXiv: 1007.2555 [math.CO].

8 [19] J.L. Hayden. Generalized Hadamard matrices. In: Des. Codes Cryptography 12 (1997), pp. 69–73.

[20] Yutaka Hiramine. On the non-existence of maximal difference matrices of deficiency 1. In: Designs, Codes and Cryptography 72.3 (2014), pp. 627–635.

[21] Yutaka Hiramine and Chihiro Suetake. On difference matrices of coset type. In: J. Combin. Theory Ser. A 120.1 (2013), pp. 266–274.

[22] K.J. Horadam. An introduction to cocyclic generalised Hadamard matrices. In: Dis- crete Applied Mathematics 102.1-2 (2000), pp. 115 –131.

[23] Dieter Jungnickel and Gerhard Grams. Maximal difference matrices of order ≤ 10. In: Discrete Mathematics 58.2 (1986), pp. 199 –203.

[24] Dieter J. Jungnickel. On difference matrices and regular latin squares. In: Abh. Math. Sem. Hamburg 50.1 (1980), pp. 219–231.

[25] B.R. Karlsson. Two-parameter complex Hadamard matrices for N = 6. In: J. Math. Phys. 50 (2009), p. 82104.

[26] B.R. Karlsson. Three-parameter complex Hadamard matrices of order 6. In: Linear Algebra Appl. 434 (2011), p. 247.

[27] Pekka H.J. Lampio, F. Sz¨oll˝osi,and Ptric .R.J. Ostergard.¨ The quaternary complex Hadamard matrices of orders 10, 12, and 14. In: ArXiv e-prints (2012). arXiv: 1204.5164 [math.CO].

[28] Pekka H.J. Lampio and Patric R.J. Ostergard.¨ Classification of difference matrices over cyclic groups. In: J. Statistical Planning and Inference 141.3 (2011), pp. 1194 –1207

[29] Warwick de Launey. Generalised Hadamard matrices whose rows and columns form a group. In: Combinatorial Mathematics X. Ed. by L.R.A. Casse. Vol. 1036. Lec- ture Notes in Mathematics. Berlin-Heidelberg-New York: Springer-Verlag, 1983, pp. 154–176.

[30] Warwick de Launey. On the non-existence of generalised Hadamard matrices. In: J. Statist. Plan. Inf. 10 (1984), pp. 385–386.

[31] Warwick de Launey. A survey of generalised Hadamard matrices and difference matrices D k, λ; G with large k. In: Utilitas Math. 30 (1986), pp. 5–29. ( ) [32] Warwick de Launey. Some constructions for square GBRDs and some new infinite families of generalised Hadamard matrices. Preprint. 1986.

[33] Warwick de Launey. On difference matrices, transversal designs, resolvable transver- sal designs and large sets of mutually orthogonal F -squares. In: J. Statist. Plan. Inf. 16 (1987), pp. 107– 126.

9 [34] Warwick de Launey. GBRDs: Some new constructions for difference matrices, gener- alised Hadamard matrices and balanced weighing matrices. In: Graphs and Combin. 5 (1989), pp. 125–135.

[35] Warwick de Launey. Generalised Hadamard matrices which are developed modulo a group. In: Discrete Math. 104 (1992), pp. 49–65.

[36] W. de Launey, Generalized Hadamard matrices, in C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs (second ed.), Chapman & Hall, CRC, Boca Raton, FL (2007), pp. 301–305

[37] Warwick de Launey and J. E. Dawson. A note on the construction of GH 4tq; EA q for t = 1, 2. In: Australas. J. Combin. 6 (1992), pp. 177–186. ( ( )) [38] Warwick de Launey and J. E. Dawson. An asymptotic result on the existence of generalised Hadamard matrices. In: J. Combin. Theory, A 65.1 (1994), pp. 158–163.

[39] Z.W. Liu. For the odd prime p the construction of difference matrix for OA 2p2, 2p 1; p, 2 . In: Acta Math. Appl. Sinica 3 (1977), pp. 35–45. ( + ) [40] La Jolla Difference Set Repository. URL www.ccrwest.org/ds.html. Viewed 2014:10:03.

[41] M. Matolcsi and F. Sz¨oll˝osi. Towards a classification of 6 6 complex Hadamard matrices. In: ArXiv Mathematics e-prints (2007). arXiv: math/0702043.×

[42] Jennifer Seberry. Some remarks on generalized Hadamard matrices and theorems of Ra- jkundlia on SBIBDs. In: Combinatorial Mathematics VI. Ed. by A.F. Horadam and W.D. Wallis. Vol. 748. Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer-Verlag, 1979, pp. 154–164.

[43] Jennifer Seberry. A construction for generalized Hadamard matrices. In: J. Statist. Plan. Inf. 4 (1980), pp. 365–368.

[44] Jennifer Seberry. Generalized Hadamard matrices and colourable designs in the con- struction of regular GDDs with two and three association classes. In: J. Statistical Planning and Inference 15.0 (1986-1987), pp. 237–246.

[45] Jennifer Seberry and N.A. Balonin, Equivalence of the Existence of Hadamard Ma- trices and Cretan 4t 1, 2 -Mersenne Matrices with Maximum Determinant, Journal of Theoretical and( Computational− ) Mathematics, St. Joseph’s College, Irinjalakuda, India,(submitted)

[46] Jennifer Seberry, Ken Finlayson, Sarah Spence Adams, Beata Wysocki, Tadeusz Wysocki and Tianbing Xia, The theory of quaternion orthogonal designs, In: IEEE Transactions on Signal Processing, 56 1 (2008), 256-265.

10 [47] Jennifer Seberry and Mieko Yamada. Hadamard matrices, sequences, and block designs, Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson, eds., John Wiley and Sons, Inc., 1992. pp. 431–560.

[48] Bhu Dev Sharma and Norris Sookoo. Eigenvalues of the difference matrices of the Lee partition. In: J. Discrete Mathematical Sciences and Cryptography 13.2 (2010), pp. 175–183.

[49] S. Shrikhande. Generalized Hadamard matrices and orthogonal arrays strength two. In: Canad. J. Math. 16 (1964), pp. 736–740.

[50] D. Street. Generalised Hadamard matrices, orthogonal arrays and F-squares. In: Ars Combin. 8 (1979), pp. 131–141.

[51] Ferenc Sz¨oll˝osi. Exotic complex Hadamard matrices, and their equivalence. In: ArXiv e- prints (2010). To appear in Cryptography and Communications: Discrete Structures, Boolean Functions and Sequences; arXiv: 1001.3062 [math.CO].

[52] Ferenc Sz¨oll˝osi. Construction, classification and parametrization of complex Hadamard matrices. PhD thesis. The University of Wisconsin - Madison, 2011.

[53] Ferenc Sz¨oll˝osi. A note on the existence of BH 19, 6 matrices. In: ArXiv e-prints (2012). arXiv: 1204.5166 [math.CO]. ( )

[54] Ferenc Sz¨oll˝osi. On quaternary complex Hadamard matrices of small orders. In: ArXiv e-prints (2012). Journal reference: Advances in Mathematics of Communica- tions, 5 309–315 (2011). arXiv: 1204.5160 [math.CO].

[55] Dobromir Todorov. Difference matrices toward MOLS of order 10. In: C. R. Acad. Bulgare Sci. 65.8 (2012), pp. 1029–1034.

[56] W.D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, In: Combinatorics : Room Squares, Sum-free Sets, Hadamard Matrices, 292, Lecture Notes in Mathe- matics, Springer–Verlag, Berlin–Heidelberg–New York, (1972), 508 pages.

[57] Arne Winterhof. On the non-existence of generalized Hadamard matrices. In: J. Statistical Planning and Inference 84.1–2 (2000), pp. 337–342.

[58] Yingshan Zhang. “Construction of difference matrices D rm r 1 , bm−1a b 1 ; p . In: Advances and Applications in Discrete Mathematics (6.2( (2010),+ ) pp. 77–100.( + ) )

[59] Yingshan Zhang, Lian Duan, Yiqiang Lu, and Zhongguo Zheng. Construction of generalized Hadamard matrices D rm r 1 , rm r 1 ; p . In: J. Statistical Planning and Inference 104.2 (2002), pp. 239( –258.( + ) ( + ) )

11