Applications of Finite Geometries to Designs and Codes

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Finite Geometries to Designs and Codes Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2011 Applications of finite geometries ot designs and codes David C. Clark Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Mathematics Commons Copyright 2011 David C. Clark Recommended Citation Clark, David C., "Applications of finite geometries ot designs and codes", Dissertation, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/199 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Mathematics Commons APPLICATIONS OF FINITE GEOMETRIES TO DESIGNS AND CODES By David C. Clark A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Mathematical Sciences) MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 c 2011 David C. Clark This dissertation, "Applications of Finite Geometries to Designs and Codes," is hereby approved in partial fulfillment of the requirements for the Degree of DOC- TOR OF PHILOSOPHY IN MATHEMATICAL SCIENCES. Department of Mathematical Sciences Signatures: Dissertation Advisor Dr. Vladimir Tonchev Committee Member Dr. Donald Kreher Committee Member Dr. Stefaan De Winter Committee Member Dr. Steven Seidel Department Chair Dr. Mark Gockenbach Date Contents List of Figures ..................................... ix List of Tables ...................................... xi Preface .........................................xiii Acknowledgments ................................... xv Abstract .........................................xvii 1 Designs, codes, and finite geometries ....................... 1 1.1 Introduction .................................. 1 1.1.1 Designs ................................ 2 1.1.2 Error-correcting codes ........................ 4 1.1.3 The codes of a design and p-ranks .................. 5 1.2 Finite geometry designs and codes ...................... 6 1.2.1 Projective Geometry Designs ..................... 6 v 1.2.2 Affine Geometry Designs ....................... 7 1.2.3 The finite geometry codes and their duals .............. 9 1.2.4 Decoding schemes .......................... 10 1.3 Summary and contributions .......................... 12 2 Affine geometry designs, polarities, and Hamada’s conjecture ......... 13 2.1 Ranks of incidence matrices and Hamada’s conjecture ............ 13 2.1.1 Ranks of Finite Geometry Designs .................. 14 2.1.2 Hamada’s conjecture ......................... 18 2.1.3 Proved cases ............................. 19 2.1.4 Counterexamples ........................... 24 2.2 Introduction .................................. 26 2.3 Polarity designs from AGd+1(2d + 1,q) for q > 2 .............. 35 3 Multi-step majority logic decoding and the modified finite geometry designs . 39 3.1 Introduction .................................. 39 3.2 Majority logic decoding ............................ 40 3.3 Decoding finite geometry codes ........................ 42 3.4 Decoding the modified finite geometry codes ................. 44 3.4.1 Modified projective geometry designs ................ 44 vi 3.4.2 Modified affine geometry designs .................. 48 3.5 Minimum distances .............................. 50 4 Nonbinary quantum codes derived from finite geometries ........... 55 4.1 Introduction .................................. 55 4.2 Quantum codes from projective geometry .................. 57 4.3 Quantum codes from affine geometry ..................... 61 4.4 Acknowledgments ............................... 63 5 Entanglement-assisted quantum low-density parity-check codes ....... 65 5.1 Introduction .................................. 65 5.2 Combinatorial entanglement-assisted quantum LDPC codes ......... 67 5.2.1 Preliminaries ............................. 68 5.2.2 General combinatorial constructions ................. 71 5.3 Finite geometry codes ............................. 81 5.3.1 Projective geometry codes ...................... 82 5.3.1.1 Point-by-block (Type II) Projective geometry codes .... 83 5.3.1.2 Block-by-point (Type I) Projective geometry codes .... 88 5.3.2 Affine geometry codes ........................ 90 5.3.2.1 Point-by-block (Type II) Affine geometry codes ..... 91 vii 5.3.2.2 Block-by-point (Type I) Affine geometry codes ...... 93 5.3.3 Euclidean geometry codes ...................... 96 5.4 Performance .................................. 99 5.5 Conclusion ..................................104 5.A Appendix A: Existence of 2-designs .....................107 5.B Appendix B: Parameters of quantum and classical FG-LDPC codes with girth six ....................................108 6 Summary and future work ............................111 6.1 Summary ...................................111 6.2 Future work ..................................112 References .......................................115 C Copyright documentation .............................125 viii List of Figures 1.1TheFanoplane................................ 2 5.1 Performance of Type I EAQECCs ......................100 5.2 Performance of Type II EAQECCs ......................102 5.3 Performance of Type II EAQECCs ......................103 5.4 Performance of high-rate Type II EAQECCs .................104 5.5 Performance of EAQECCs obtained by deleting subdesigns from AG1(3,3). 106 ix x List of Tables c 4.1 Sample parameters of p-ary quantum codes obtained from PGt(m, p ).... 61 4.2 Sample parameters of p-ary quantum codes obtained from AGt(m,q). ... 63 5.1 Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from PG1(m,q), q even...................................... 86 5.2 Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from PG1(m,q), q odd. ..................................... 87 5.3 Summary of parameters of Type II codes obtained by deleting a Steiner spread of subdesigns isomorphic to PG1(2,2) from PG1(5,2). ....... 88 5.4 Sample parameters of Type I [[n,k,d;c]] EAQECCs obtained from PG1(m,q), q even...................................... 89 5.5 Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from AG1(m,q), q even...................................... 93 5.6 Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from AG1(m,q), q odd. ..................................... 93 5.7 Summary of parameters of Type II codes obtained by deleting a Steiner spread of subdesigns isomorphic to AG1(2,4) from AG1(3,4). ....... 94 5.8 Sample parameters of Type I [[n,k,d;c]] EAQECCs obtained from AG1(m,q), q even...................................... 95 xi 5.9 Sample parameters of Type I [[n,k,d;c]] EAQECCs obtained from EG1(2,q), q even...................................... 97 5.10 Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from EG1(m,q), q even...................................... 99 5.11 Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from EG1(m,q), q odd. .....................................100 5.12 Rates of EAQECCs obtained from finite geometries. .............105 5.13 Summary of parameters of Type II EAQECCs obtained by deleting subde- signs from AG1(3,3). .............................105 5.14 Parameters of entanglement-assisted quantum LDPC codes from finite ge- ometries. ....................................109 5.15 Parameters of classical FG-LDPC codes. ...................110 xii Preface Several chapters in this dissertation are the result of collaborative work, and have been published in or submitted to refereed journals. Each paper is written according to the style of the journal in which it was published. The introduction to each paper has been left in place, even though this may repeat definitions which are given in Chapter 1. Several papers have been modified by adding an extended introductory section concerning the history of the paper’s topic, as well as minor editorial changes. Documentation of permission to reprint each article is documented in Appendix C. • Chapter 2: Affine geometry designs, polarities, and Hamada’s conjecture. This is joint work with D. Jungnickel and V. D. Tonchev. The topic was suggested by V. D. Tonchev. The author performed the research and wrote the paper, with guidance and editing provided by D. Jungnickel and V. D. Tonchev. It was previously published in the Journal of Combinatorial Theory, Series A. • Chapter 4: Nonbinary quantum codes derived from finite geometries. This is joint work with V. D. Tonchev. The topic was suggested by V. D. Tonchev. The author performed the research and wrote the paper, with guidance and editing provided by V. D. Tonchev. It was previously published in the journal Finite Fields and their Applications. • Chapter 5: Entanglement-assisted quantum low-density parity-check codes. This is joint work with Y. Fujiwara, P. Vandendriessche, M. De Boeck, and V. D. Tonchev. The topic was suggested by Y. Fujiwara. The author performed the research and writing for Section III, except for two theorems concerning minimum distance. The author also performed the simulations and created the plots and tables in Section IV. The author is also responsible for portions of the writing, editing, and figures in all other sections. It was previously published in the journal Physical Review A. xiii xiv Acknowledgments My sincere thanks go to my advisor, Vladimir Tonchev. Throughout my graduate career, Professor Tonchev has provided me with an amazing range of opportunities. His encour- agement and ideas have directed the course of my research, and I would not be where I am today without
Recommended publications
  • Algebraic Combinatorics and Finite Geometry
    An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) Algebraic Combinatorics and Finite Geometry Leo Storme Ghent University Department of Mathematics: Analysis, Logic and Discrete Mathematics Krijgslaan 281 - Building S8 9000 Ghent Belgium Francqui Foundation, May 5, 2021 Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) ACKNOWLEDGEMENT Acknowledgement: A big thank you to Ferdinand Ihringer for allowing me to use drawings and latex code of his slide presentations of his lectures for Capita Selecta in Geometry (Ghent University). Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) OUTLINE 1 AN INTRODUCTION TO ALGEBRAIC GRAPH THEORY 2 ERDOS˝ -KO-RADO RESULTS 3 CAMERON-LIEBLER SETS IN PG(3; q) 4 CAMERON-LIEBLER k-SETS IN PG(n; q) Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) OUTLINE 1 AN INTRODUCTION TO ALGEBRAIC GRAPH THEORY 2 ERDOS˝ -KO-RADO RESULTS 3 CAMERON-LIEBLER SETS IN PG(3; q) 4 CAMERON-LIEBLER k-SETS IN PG(n; q) Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) DEFINITION A graph Γ = (X; ∼) consists of a set of vertices X and an anti-reflexive, symmetric adjacency relation ∼ ⊆ X × X.
    [Show full text]
  • Structure, Classification, and Conformal Symmetry, of Elementary
    Lett Math Phys (2009) 89:171–182 DOI 10.1007/s11005-009-0351-2 Structure, Classification, and Conformal Symmetry, of Elementary Particles over Non-Archimedean Space–Time V. S. VARADARAJAN and JUKKA VIRTANEN Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA. e-mail: [email protected]; [email protected] Received: 3 April 2009 / Revised: 12 September 2009 / Accepted: 12 September 2009 Publishedonline:23September2009–©TheAuthor(s)2009. This article is published with open access at Springerlink.com Abstract. It is known that no length or time measurements are possible in sub-Planckian regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of space- time may therefore be assumed to be non-archimedean. In this letter, the consequences of this hypothesis for the structure, classification, and conformal symmetry of elementary particles, when spacetime is a flat space over a non-archimedean field such as the p-adic numbers, is explored. Both the Poincare´ and Galilean groups are treated. The results are based on a new variant of the Mackey machine for projective unitary representations of semidirect product groups which are locally compact and second countable. Conformal spacetime is constructed over p-adic fields and the impossibility of conformal symmetry of massive and eventually massive particles is proved. Mathematics Subject Classification (2000). 22E50, 22E70, 20C35, 81R05. Keywords. Volovich hypothesis, non-archimedean fields, Poincare´ group, Galilean group, semidirect product, cocycles, affine action, conformal spacetime, conformal symmetry, massive, eventually massive, massless particles. 1. Introduction In the 1970s many physicists, concerned about the divergences in quantum field theories, started exploring the micro-structure of space–time itself as a possible source of these problems.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • GL(N, Q)-Analogues of Factorization Problems in the Symmetric Group Joel Brewster Lewis, Alejandro H
    GL(n, q)-analogues of factorization problems in the symmetric group Joel Brewster Lewis, Alejandro H. Morales To cite this version: Joel Brewster Lewis, Alejandro H. Morales. GL(n, q)-analogues of factorization problems in the sym- metric group. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. hal-02168127 HAL Id: hal-02168127 https://hal.archives-ouvertes.fr/hal-02168127 Submitted on 28 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FPSAC 2016 Vancouver, Canada DMTCS proc. BC, 2016, 755–766 GLn(Fq)-analogues of factorization problems in Sn Joel Brewster Lewis1y and Alejandro H. Morales2z 1 School of Mathematics, University of Minnesota, Twin Cities 2 Department of Mathematics, University of California, Los Angeles Abstract. We consider GLn(Fq)-analogues of certain factorization problems in the symmetric group Sn: rather than counting factorizations of the long cycle (1; 2; : : : ; n) given the number of cycles of each factor, we count factorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in Sn, the generating function counting these factorizations has attractive coefficients after an appropriate change of basis.
    [Show full text]
  • Noncommutative Geometry and the Spectral Model of Space-Time
    S´eminaire Poincar´eX (2007) 179 – 202 S´eminaire Poincar´e Noncommutative geometry and the spectral model of space-time Alain Connes IHES´ 35, route de Chartres 91440 Bures-sur-Yvette - France Abstract. This is a report on our joint work with A. Chamseddine and M. Marcolli. This essay gives a short introduction to a potential application in physics of a new type of geometry based on spectral considerations which is convenient when dealing with noncommutative spaces i.e. spaces in which the simplifying rule of commutativity is no longer applied to the coordinates. Starting from the phenomenological Lagrangian of gravity coupled with matter one infers, using the spectral action principle, that space-time admits a fine structure which is a subtle mixture of the usual 4-dimensional continuum with a finite discrete structure F . Under the (unrealistic) hypothesis that this structure remains valid (i.e. one does not have any “hyperfine” modification) until the unification scale, one obtains a number of predictions whose approximate validity is a basic test of the approach. 1 Background Our knowledge of space-time can be summarized by the transition from the flat Minkowski metric ds2 = − dt2 + dx2 + dy2 + dz2 (1) to the Lorentzian metric 2 µ ν ds = gµν dx dx (2) of curved space-time with gravitational potential gµν . The basic principle is the Einstein-Hilbert action principle Z 1 √ 4 SE[ gµν ] = r g d x (3) G M where r is the scalar curvature of the space-time manifold M. This action principle only accounts for the gravitational forces and a full account of the forces observed so far requires the addition of new fields, and of corresponding new terms SSM in the action, which constitute the Standard Model so that the total action is of the form, S = SE + SSM .
    [Show full text]
  • Combinatorial Design University of Southern California Non-Parametric Computational Design Strategies
    Jose Sanchez Combinatorial design University of Southern California Non-parametric computational design strategies 1 ABSTRACT This paper outlines a framework and conceptualization of combinatorial design. Combinatorial 1 Design – Year 3 – Pattern of one design is a term coined to describe non-parametric design strategies that focus on the permutation, unit in two scales. Developed by combinatorial design within a game combination and patterning of discrete units. These design strategies differ substantially from para- engine. metric design strategies as they do not operate under continuous numerical evaluations, intervals or ratios but rather finite discrete sets. The conceptualization of this term and the differences with other design strategies are portrayed by the work done in the last 3 years of research at University of Southern California under the Polyomino agenda. The work, conducted together with students, has studied the use of discrete sets and combinatorial strategies within virtual reality environments to allow for an enhanced decision making process, one in which human intuition is coupled to algo- rithmic intelligence. The work of the research unit has been sponsored and tested by the company Stratays for ongoing research on crowd-sourced design. 44 INTRODUCTION—OUTSIDE THE PARAMETRIC UMBRELLA To start, it is important that we understand that the use of the terms parametric and combinatorial that will be used in this paper will come from an architectural and design background, as the association of these terms in mathematics and statistics might have a different connotation. There are certainly lessons and a direct relation between the term ‘combinatorial’ as used in this paper and the field of combinatorics and permutations in mathematics.
    [Show full text]
  • Connections Between Graph Theory, Additive Combinatorics, and Finite
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Connections between graph theory, additive combinatorics, and finite incidence geometry A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Michael Tait Committee in charge: Professor Jacques Verstra¨ete,Chair Professor Fan Chung Graham Professor Ronald Graham Professor Shachar Lovett Professor Brendon Rhoades 2016 Copyright Michael Tait, 2016 All rights reserved. The dissertation of Michael Tait is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION To Lexi. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . .v List of Figures . vii Acknowledgements . viii Vita........................................x Abstract of the Dissertation . xi 1 Introduction . .1 1.1 Polarity graphs and the Tur´annumber for C4 ......2 1.2 Sidon sets and sum-product estimates . .3 1.3 Subplanes of projective planes . .4 1.4 Frequently used notation . .5 2 Quadrilateral-free graphs . .7 2.1 Introduction . .7 2.2 Preliminaries . .9 2.3 Proof of Theorem 2.1.1 and Corollary 2.1.2 . 11 2.4 Concluding remarks . 14 3 Coloring ERq ........................... 16 3.1 Introduction . 16 3.2 Proof of Theorem 3.1.7 . 21 3.3 Proof of Theorems 3.1.2 and 3.1.3 . 23 3.3.1 q a square . 24 3.3.2 q not a square . 26 3.4 Proof of Theorem 3.1.8 . 34 3.5 Concluding remarks on coloring ERq ........... 36 4 Chromatic and Independence Numbers of General Polarity Graphs .
    [Show full text]
  • COMBINATORICS, Volume
    http://dx.doi.org/10.1090/pspum/019 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume XIX COMBINATORICS AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 1971 Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society Held at the University of California Los Angeles, California March 21-22, 1968 Prepared by the American Mathematical Society under National Science Foundation Grant GP-8436 Edited by Theodore S. Motzkin AMS 1970 Subject Classifications Primary 05Axx, 05Bxx, 05Cxx, 10-XX, 15-XX, 50-XX Secondary 04A20, 05A05, 05A17, 05A20, 05B05, 05B15, 05B20, 05B25, 05B30, 05C15, 05C99, 06A05, 10A45, 10C05, 14-XX, 20Bxx, 20Fxx, 50A20, 55C05, 55J05, 94A20 International Standard Book Number 0-8218-1419-2 Library of Congress Catalog Number 74-153879 Copyright © 1971 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government May not be produced in any form without permission of the publishers Leo Moser (1921-1970) was active and productive in various aspects of combin• atorics and of its applications to number theory. He was in close contact with those with whom he had common interests: we will remember his sparkling wit, the universality of his anecdotes, and his stimulating presence. This volume, much of whose content he had enjoyed and appreciated, and which contains the re• construction of a contribution by him, is dedicated to his memory. CONTENTS Preface vii Modular Forms on Noncongruence Subgroups BY A. O. L. ATKIN AND H. P. F. SWINNERTON-DYER 1 Selfconjugate Tetrahedra with Respect to the Hermitian Variety xl+xl + *l + ;cg = 0 in PG(3, 22) and a Representation of PG(3, 3) BY R.
    [Show full text]
  • The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 Email: [email protected]
    The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: [email protected] In this column we review the following books. 1. Combinatorial Designs: Constructions and Analysis by Douglas R. Stinson. Review by Gregory Taylor. A combinatorial design is a set of sets of (say) {1, . , n} that have various properties, such as that no two of them have a large intersection. For what parameters do such designs exist? This is an interesting question that touches on many branches of math for both origin and application. 2. Combinatorics of Permutations by Mikl´osB´ona. Review by Gregory Taylor. Usually permutations are viewed as a tool in combinatorics. In this book they are considered as objects worthy of study in and of themselves. 3. Enumerative Combinatorics by Charalambos A. Charalambides. Review by Sergey Ki- taev, 2008. Enumerative combinatorics is a branch of combinatorics concerned with counting objects satisfying certain criteria. This is a far reaching and deep question. 4. Geometric Algebra for Computer Science by L. Dorst, D. Fontijne, and S. Mann. Review by B. Fasy and D. Millman. How can we view Geometry in terms that a computer can understand and deal with? This book helps answer that question. 5. Privacy on the Line: The Politics of Wiretapping and Encryption by Whitfield Diffie and Susan Landau. Review by Richard Jankowski. What is the status of your privacy given current technology and law? Read this book and find out! Books I want Reviewed If you want a FREE copy of one of these books in exchange for a review, then email me at gasarchcs.umd.edu Reviews need to be in LaTeX, LaTeX2e, or Plaintext.
    [Show full text]
  • Finite Projective Geometries 243
    FINITE PROJECTÎVEGEOMETRIES* BY OSWALD VEBLEN and W. H. BUSSEY By means of such a generalized conception of geometry as is inevitably suggested by the recent and wide-spread researches in the foundations of that science, there is given in § 1 a definition of a class of tactical configurations which includes many well known configurations as well as many new ones. In § 2 there is developed a method for the construction of these configurations which is proved to furnish all configurations that satisfy the definition. In §§ 4-8 the configurations are shown to have a geometrical theory identical in most of its general theorems with ordinary projective geometry and thus to afford a treatment of finite linear group theory analogous to the ordinary theory of collineations. In § 9 reference is made to other definitions of some of the configurations included in the class defined in § 1. § 1. Synthetic definition. By a finite projective geometry is meant a set of elements which, for sugges- tiveness, are called points, subject to the following five conditions : I. The set contains a finite number ( > 2 ) of points. It contains subsets called lines, each of which contains at least three points. II. If A and B are distinct points, there is one and only one line that contains A and B. HI. If A, B, C are non-collinear points and if a line I contains a point D of the line AB and a point E of the line BC, but does not contain A, B, or C, then the line I contains a point F of the line CA (Fig.
    [Show full text]
  • Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference
    Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference Sunday 30 May to Friday 4 June 2010 Index of Talks and Abstracts Main talks 1. Simeon Ball, On subsets of a finite vector space in which every subset of basis size is a basis 2. Simon Blackburn, Honeycomb arrays 3. G`abor Korchm`aros, Curves over finite fields, an approach from finite geometry 4. Cheryl Praeger, Basic pregeometries 5. Bernhard Schmidt, Finiteness of circulant weighing matrices of fixed weight 6. Douglas Stinson, Multicollision attacks on iterated hash functions Short talks 1. Mari´en Abreu, Adjacency matrices of polarity graphs and of other C4–free graphs of large size 2. Marco Buratti, Combinatorial designs via factorization of a group into subsets 3. Mike Burmester, Lightweight cryptographic mechanisms based on pseudorandom number generators 4. Philippe Cara, Loops, neardomains, nearfields and sets of permutations 5. Ilaria Cardinali, On the structure of Weyl modules for the symplectic group 6. Bill Cherowitzo, Parallelisms of quadrics 7. Jan De Beule, Large maximal partial ovoids of Q−(5, q) 8. Bart De Bruyn, On extensions of hyperplanes of dual polar spaces 1 9. Frank De Clerck, Intriguing sets of partial quadrangles 10. Alice Devillers, Symmetry properties of subdivision graphs 11. Dalibor Froncek, Decompositions of complete bipartite graphs into generalized prisms 12. Stelios Georgiou, Self-dual codes from circulant matrices 13. Robert Gilman, Cryptology of infinite groups 14. Otokar Groˇsek, The number of associative triples in a quasigroup 15. Christoph Hering, Latin squares, homologies and Euler’s conjecture 16. Leanne Holder, Bilinear star flocks of arbitrary cones 17. Robert Jajcay, On the geometry of cages 18.
    [Show full text]
  • Second Edition Volume I
    Second Edition Thomas Beth Universitat¨ Karlsruhe Dieter Jungnickel Universitat¨ Augsburg Hanfried Lenz Freie Universitat¨ Berlin Volume I PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain First edition c Bibliographisches Institut, Zurich, 1985 c Cambridge University Press, 1993 Second edition c Cambridge University Press, 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United Kingdom at the University Press, Cambridge Typeset in Times Roman 10/13pt. in LATEX2ε[TB] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data Beth, Thomas, 1949– Design theory / Thomas Beth, Dieter Jungnickel, Hanfried Lenz. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0 521 44432 2 (hardbound) 1. Combinatorial designs and configurations. I. Jungnickel, D. (Dieter), 1952– . II. Lenz, Hanfried. III. Title. QA166.25.B47 1999 5110.6 – dc21 98-29508 CIP ISBN 0 521 44432 2 hardback Contents I. Examples and basic definitions .................... 1 §1. Incidence structures and incidence matrices ............ 1 §2. Block designs and examples from affine and projective geometry ........................6 §3. t-designs, Steiner systems and configurations .........
    [Show full text]