Perfect Sequences Over the Quaternions and (4N, 2, 4N, 2N)-Relative Difference Sets in Cn × Q8

Total Page:16

File Type:pdf, Size:1020Kb

Perfect Sequences Over the Quaternions and (4N, 2, 4N, 2N)-Relative Difference Sets in Cn × Q8 Perfect Sequences over the Quaternions and (4n; 2; 4n; 2n)-Relative Difference Sets in Cn × Q8 Santiago Barrera Acevedo1? and Heiko Dietrich2? 1 Monash University, School of Mathematical Sciences, Clayton 3800 VIC, Australia [email protected] 2 Monash University, School of Mathematical Sciences, Clayton 3800 VIC, Australia [email protected] Abstract. Perfect sequences over general quaternions were introduced in 2009 by Kuznetsov. The existence of perfect sequences of increasing lengths over the basic quaternions Q8 = {±1; ±i; ±j; ±kg was established in 2012 by Barrera Acevedo and Hall. The aim of this paper is to prove a 1–1 correspondence be- tween perfect sequences of length n over Q8 [ qQ8 with q = (1 + i + j + k)=2, and (4n; 2; 4n; 2n)-relative difference sets in Cn × Q8 with forbidden subgroup a C2; here Cm is a cyclic group of order m. We show that if n = p + 1 for a prime p and integer a ≥ 0 with n ≡ 2 mod 4, then there exists a (4n; 2; 4n; 2n)- relative different set in Cn × Q8 with forbidden subgroup C2. Lastly, we show that every perfect sequence of length n over Q8 [ qQ8 yields a Hadamard matrix of order 4n (and a quaternionic Hadamard matrix of order n over Q8 [ qQ8). The final publication is available at Springer via http://link.springer.com/article/10.1007/s12095-017-0224-y 1 Introduction The periodic autocorrelation of a sequence is a measure for how much the sequence differs from its cyclic shifts. If the autocorrelation values for all nontrivial cyclic shifts are 0, then the sequence is perfect. It is well known that sequences with good autocor- relation properties, such as being perfect, have important applications in information technology, for example, in digital watermarking, frequency hopping patterns for radar, or sonar communications. However, it is very difficult to construct perfect sequences over 2nd-, 4th-, and in general over n-th roots of unity. In fact, it is conjectured that perfect sequences over n-th roots of unity do not exist for lengths greater that n2 [14]. Perfect sequences are closely related to relative difference sets and Hadamard matrices. Relative difference sets are important objects in combinatorial design theory and finite geometry, see [15, 16]. They have been studied extensively in abelian groups (see for example [5, 6] and their references). A Hadamard matrix H of order n is a an n × n matrix with entries in {±1g and HH| = nIn. Hadamard matrices have significant ap- plications, for example, in spectroscopy, object recognition, or coding of digital signals and encryption, see [9] for more details. Hadamard matrices exist for many orders, and it is the famous Hadamard Conjecture which claims that there is a Hadamard matrix ? This research was partly funded by ARC DECRA projects DE140100088 and DE140101201. of order 4n for all positive integers n. Starting 2001, Arasu, de Launey, and Ma [1, 3] established and studied a connection between perfect arrays of size m × n over 4th- roots of unity and (2nm; 2; 2nm; nm)-relative difference sets in Cn × Cm × C4 with forbidden subgroup of size 2. Such relative difference sets are now related to Hadamard matrices: Jungnickel [11] proved that every (n; 2; n; n=2)-relative difference set with forbidden subgroup of size 2 yields a Hadamard matrix of order n. We note that for every n divisible by 4, Ito [10] constructed a group and conjectured that it contains an (n; 2; n; n=2)-relative difference set. This conjecture has been verified for all n ≤ 42, see [18], and if it is true, then so is the Hadamard Conjecture. Due to the importance of perfect sequences and the difficulty to construct them over n-th roots of unity, there has been some focus on other classes of sequences with good autocorrelation. One of these classes has been introduced by Kuznetsov [13], who de- fined perfect sequences over the quaternion algebra. In 2012, Barrera Acevedo and Hall [4] constructed the first infinite family of perfect sequences of increasing lengths over the basic quaternions Q8 = {±1; ±i; ±j; ±kg. The aim of the present paper is to study such quaternionic sequences further and to exploit and establish relations with relative difference sets and Hadamard matrices. In the following let q = (1 + i + j + k)=2. Motivated by the result of Arasu et al., our main result is a 1–1 correspondence between perfect sequences of length n over the alphabet Q8 [ qQ8 and (4n; 2; 4n; 2n)-relative difference sets in Cn × Q8 with forbidden subgroup C2 ≤ Q8. We discuss these relative difference sets in Section 3, and then prove the 1–1 correspondence in Section 4. In Section 5, we comment on the well known connections between relative difference sets and Hadamard matrices. We show that every perfect sequence of length n over the alphabet Q8 [ qQ8 yields a quaternionic Hadamard matrix of order n and a Hadamard matrix of order 4n. We conclude in Section 6 with a discussion of possible future work. 2 Notation We denote by IR and C the field of real and complex numbers, respectively. For a posi- tive integer n we denote by Cn the cyclic group of order n. The quaternion algebra IH is the 4-dimensional real algebra with IR-basis f1; i; j; kg and non-commutative mul- tiplication defined by i2 = j2 = k2 = −1 and ij = k. It follows readily from these relations that jk = i, ki = j, ji = −k, kj = −i, and ik = −j. The IR-linear com- plex conjugation on IH is denoted h 7! h∗, and uniquely defined by 1∗ = 1, i∗ = −i, ∗ ∗ j = −j, and k = −k. Note that the basic quaternions Q8 = {±1; ±i; ±j; ±kg form a group under multiplication, the quaternion group of order 8. The multiplica- tive group consisting of all elements {±1; ±i; ±j; ±k; (±1±i±j ±k)=2g (where signs may be taken in any combination) is the so-called binary tetrahedral group, it has size 24 and it is the unit group of the so-called Hurwitz quaternions. By abuse of notation, in this paper, we call it the quaternion group Q24. Note that every element in Q24 has norm 1. If G is a multiplicatively written group and K is a ring with 1, then the group ring K[G] is the free K-module with basis G, equipped with the multiplication X X X agg bhh = agbhgh: g2G h2G g;h2G We identify the multiplicative identities 1G, 1K , and 1K[G], and denote them all by 1. Consequently, a positive integer n can be identified with the sum of n copies of 1K in K, and with the sum of n copies of 1G in K[G]. The following notation is also standard in the literature of relative difference sets, cf. Jungnickel and Pott [12]. Definition 1. Let K[G] be as before, let H ⊆ G be a subset and A 2 K[G]. P P a) We identify H with h2H h 2 K[G], in particular, G = g2G g 2 K[G]. P (−1) P −1 b) If A = g2G agg, then we define A = g2G agg 2 K[G]. Notation 1. Throughout this paper, n is a positive integer and Gn is the group n 4 4 2 2 −1 −1 Gn = hw; x; y j w = x = y = 1; x = y ; yxy = x ; wx = xw; wy = ywi: 2 We define H = hx; yi, Cn = hwi, and N = hx i as subgroups of Gn, so that Gn = Cn × H, and Cn, H, and N are isomorphic to Cn, Q8, and C2, respectively. 3 Relative difference sets An (m; n; k; λ)-relative difference set R in a group G of order mn, relative to a for- bidden normal subgroup N of order n, is a k-subset of G with the property that the list −1 of quotients r1r2 with distinct r1; r2 2 R contains each element in G n N exactly λ times and does not contain the elements of N. We also call R an (m; n; k; λ)-RDS, 2 2 3 3 or simply RDS. For example, R = fx; y; wy; xy; x ; wx ; wx ; wxy g ⊂ G2 is an 2 (8; 2; 8; 4)-RDS in G2 with forbidden subgroup N = hx i. Note that R ⊆ G is an (m; n; k; λ)-RDS if and only if in the real group ring IR[G] RR(−1) = k + λ(G − N): P Recall that every subset R ⊆ Gn is identified with r2R r 2 IR[Gn], and that the d u v latter is a sum of elements of the form w x y 2 Gn, that is, R is identified with a polynomial expression in the generators fx; y; wg of Gn. It is useful to introduce the following characteristic functions. We comment on it in the subsequent remark. Definition 2. For a subset R of Gn, we define a) χR : Gn ! f0; 1g by χR(g) = 1 if g 2 R, and χR(g) = 0 otherwise, b) ξR : Gn ! {−1; 1g by ξR(g) = −1 if g 2 R, and ξR(g) = 1 otherwise, P d u u d u v c) P (w; x; y) = d u v χ (w x y )w x y 2 IR[G ], R w x y 2Gn R n P d u u d u v d) T (w; x; y) = d u v ξ (w x y )w x y 2 IR[G ]. R w x y 2Gn R n The main advantage of this notation is that it allows us to describe evaluations, that is, certain substitutions for the generators x and y, for example, we have X P (w; i; j) = χ (wdxuyu)wdiujv 2 IH[C ]; (1) R d u v R n w x y 2Gn which is an element in the quaternion group ring of Cn = hwi.
Recommended publications
  • Combinatorial Design University of Southern California Non-Parametric Computational Design Strategies
    Jose Sanchez Combinatorial design University of Southern California Non-parametric computational design strategies 1 ABSTRACT This paper outlines a framework and conceptualization of combinatorial design. Combinatorial 1 Design – Year 3 – Pattern of one design is a term coined to describe non-parametric design strategies that focus on the permutation, unit in two scales. Developed by combinatorial design within a game combination and patterning of discrete units. These design strategies differ substantially from para- engine. metric design strategies as they do not operate under continuous numerical evaluations, intervals or ratios but rather finite discrete sets. The conceptualization of this term and the differences with other design strategies are portrayed by the work done in the last 3 years of research at University of Southern California under the Polyomino agenda. The work, conducted together with students, has studied the use of discrete sets and combinatorial strategies within virtual reality environments to allow for an enhanced decision making process, one in which human intuition is coupled to algo- rithmic intelligence. The work of the research unit has been sponsored and tested by the company Stratays for ongoing research on crowd-sourced design. 44 INTRODUCTION—OUTSIDE THE PARAMETRIC UMBRELLA To start, it is important that we understand that the use of the terms parametric and combinatorial that will be used in this paper will come from an architectural and design background, as the association of these terms in mathematics and statistics might have a different connotation. There are certainly lessons and a direct relation between the term ‘combinatorial’ as used in this paper and the field of combinatorics and permutations in mathematics.
    [Show full text]
  • The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 Email: [email protected]
    The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: [email protected] In this column we review the following books. 1. Combinatorial Designs: Constructions and Analysis by Douglas R. Stinson. Review by Gregory Taylor. A combinatorial design is a set of sets of (say) {1, . , n} that have various properties, such as that no two of them have a large intersection. For what parameters do such designs exist? This is an interesting question that touches on many branches of math for both origin and application. 2. Combinatorics of Permutations by Mikl´osB´ona. Review by Gregory Taylor. Usually permutations are viewed as a tool in combinatorics. In this book they are considered as objects worthy of study in and of themselves. 3. Enumerative Combinatorics by Charalambos A. Charalambides. Review by Sergey Ki- taev, 2008. Enumerative combinatorics is a branch of combinatorics concerned with counting objects satisfying certain criteria. This is a far reaching and deep question. 4. Geometric Algebra for Computer Science by L. Dorst, D. Fontijne, and S. Mann. Review by B. Fasy and D. Millman. How can we view Geometry in terms that a computer can understand and deal with? This book helps answer that question. 5. Privacy on the Line: The Politics of Wiretapping and Encryption by Whitfield Diffie and Susan Landau. Review by Richard Jankowski. What is the status of your privacy given current technology and law? Read this book and find out! Books I want Reviewed If you want a FREE copy of one of these books in exchange for a review, then email me at gasarchcs.umd.edu Reviews need to be in LaTeX, LaTeX2e, or Plaintext.
    [Show full text]
  • Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference
    Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference Sunday 30 May to Friday 4 June 2010 Index of Talks and Abstracts Main talks 1. Simeon Ball, On subsets of a finite vector space in which every subset of basis size is a basis 2. Simon Blackburn, Honeycomb arrays 3. G`abor Korchm`aros, Curves over finite fields, an approach from finite geometry 4. Cheryl Praeger, Basic pregeometries 5. Bernhard Schmidt, Finiteness of circulant weighing matrices of fixed weight 6. Douglas Stinson, Multicollision attacks on iterated hash functions Short talks 1. Mari´en Abreu, Adjacency matrices of polarity graphs and of other C4–free graphs of large size 2. Marco Buratti, Combinatorial designs via factorization of a group into subsets 3. Mike Burmester, Lightweight cryptographic mechanisms based on pseudorandom number generators 4. Philippe Cara, Loops, neardomains, nearfields and sets of permutations 5. Ilaria Cardinali, On the structure of Weyl modules for the symplectic group 6. Bill Cherowitzo, Parallelisms of quadrics 7. Jan De Beule, Large maximal partial ovoids of Q−(5, q) 8. Bart De Bruyn, On extensions of hyperplanes of dual polar spaces 1 9. Frank De Clerck, Intriguing sets of partial quadrangles 10. Alice Devillers, Symmetry properties of subdivision graphs 11. Dalibor Froncek, Decompositions of complete bipartite graphs into generalized prisms 12. Stelios Georgiou, Self-dual codes from circulant matrices 13. Robert Gilman, Cryptology of infinite groups 14. Otokar Groˇsek, The number of associative triples in a quasigroup 15. Christoph Hering, Latin squares, homologies and Euler’s conjecture 16. Leanne Holder, Bilinear star flocks of arbitrary cones 17. Robert Jajcay, On the geometry of cages 18.
    [Show full text]
  • Modules Over Semisymmetric Quasigroups
    Modules over semisymmetric quasigroups Alex W. Nowak Abstract. The class of semisymmetric quasigroups is determined by the iden- tity (yx)y = x. We prove that the universal multiplication group of a semisym- metric quasigroup Q is free over its underlying set and then specify the point- stabilizers of an action of this free group on Q. A theorem of Smith indicates that Beck modules over semisymmetric quasigroups are equivalent to modules over a quotient of the integral group algebra of this stabilizer. Implementing our description of the quotient ring, we provide some examples of semisym- metric quasigroup extensions. Along the way, we provide an exposition of the quasigroup module theory in more general settings. 1. Introduction A quasigroup (Q, ·, /, \) is a set Q equipped with three binary operations: · denoting multiplication, / right division, and \ left division; these operations satisfy the identities (IL) y\(y · x)= x; (IR) x = (x · y)/y; (SL) y · (y\x)= x; (SR) x = (x/y) · y. Whenever possible, we convey multiplication of quasigroup elements by concatena- tion. As a class of algebras defined by identities, quasigroups constitute a variety (in the universal-algebraic sense), denoted by Q. Moreover, we have a category of quasigroups (also denoted Q), the morphisms of which are quasigroup homomor- phisms respecting the three operations. arXiv:1908.06364v1 [math.RA] 18 Aug 2019 If (G, ·) is a group, then defining x/y := x · y−1 and x\y := x−1 · y furnishes a quasigroup (G, ·, /, \). That is, all groups are quasigroups, and because of this fact, constructions in the representation theory of quasigroups often take their cue from familiar counterparts in group theory.
    [Show full text]
  • ON the POLYHEDRAL GEOMETRY of T–DESIGNS
    ON THE POLYHEDRAL GEOMETRY OF t{DESIGNS A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master of Arts In Mathematics by Steven Collazos San Francisco, California August 2013 Copyright by Steven Collazos 2013 CERTIFICATION OF APPROVAL I certify that I have read ON THE POLYHEDRAL GEOMETRY OF t{DESIGNS by Steven Collazos and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Arts in Mathematics at San Francisco State University. Matthias Beck Associate Professor of Mathematics Felix Breuer Federico Ardila Associate Professor of Mathematics ON THE POLYHEDRAL GEOMETRY OF t{DESIGNS Steven Collazos San Francisco State University 2013 Lisonek (2007) proved that the number of isomorphism types of t−(v; k; λ) designs, for fixed t, v, and k, is quasi{polynomial in λ. We attempt to describe a region in connection with this result. Specifically, we attempt to find a region F of Rd with d the following property: For every x 2 R , we have that jF \ Gxj = 1, where Gx denotes the G{orbit of x under the action of G. As an application, we argue that our construction could help lead to a new combinatorial reciprocity theorem for the quasi{polynomial counting isomorphism types of t − (v; k; λ) designs. I certify that the Abstract is a correct representation of the content of this thesis. Chair, Thesis Committee Date ACKNOWLEDGMENTS I thank my advisors, Dr. Matthias Beck and Dr.
    [Show full text]
  • The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 Email: [email protected]
    The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: [email protected] In the last issue of SIGACT NEWS (Volume 45, No. 3) there was a review of Martin Davis's book The Universal Computer. The road from Leibniz to Turing that was badly typeset. This was my fault. We reprint the review, with correct typesetting, in this column. In this column we review the following books. 1. The Universal Computer. The road from Leibniz to Turing by Martin Davis. Reviewed by Haim Kilov. This book has stories of the personal, social, and professional lives of Leibniz, Boole, Frege, Cantor, G¨odel,and Turing, and explains some of the essentials of their thought. The mathematics is accessible to a non-expert, although some mathematical maturity, as opposed to specific knowledge, certainly helps. 2. From Zero to Infinity by Constance Reid. Review by John Tucker Bane. This is a classic book on fairly elementary math that was reprinted in 2006. The author tells us interesting math and history about the numbers 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; e; @0. 3. The LLL Algorithm Edited by Phong Q. Nguyen and Brigitte Vall´ee. Review by Krishnan Narayanan. The LLL algorithm has had applications to both pure math and very applied math. This collection of articles on it highlights both. 4. Classic Papers in Combinatorics Edited by Ira Gessel and Gian-Carlo Rota. Re- view by Arya Mazumdar. This book collects together many of the classic papers in combinatorics, including those of Ramsey and Hales-Jewitt.
    [Show full text]
  • Combinatorial Designs
    LECTURE NOTES COMBINATORIAL DESIGNS Mariusz Meszka AGH University of Science and Technology, Krak´ow,Poland [email protected] The roots of combinatorial design theory, date from the 18th and 19th centuries, may be found in statistical theory of experiments, geometry and recreational mathematics. De- sign theory rapidly developed in the second half of the twentieth century to an independent branch of combinatorics. It has deep interactions with graph theory, algebra, geometry and number theory, together with a wide range of applications in many other disciplines. Most of the problems are simple enough to explain even to non-mathematicians, yet the solutions usually involve innovative techniques as well as advanced tools and methods of other areas of mathematics. The most fundamental problems still remain unsolved. Balanced incomplete block designs A design (or combinatorial design, or block design) is a pair (V; B) such that V is a finite set and B is a collection of nonempty subsets of V . Elements in V are called points while subsets in B are called blocks. One of the most important classes of designs are balanced incomplete block designs. Definition 1. A balanced incomplete block design (BIBD) is a pair (V; B) where jV j = v and B is a collection of b blocks, each of cardinality k, such that each element of V is contained in exactly r blocks and any 2-element subset of V is contained in exactly λ blocks. The numbers v, b, r, k an λ are parameters of the BIBD. λ(v−1) λv(v−1) Since r = k−1 and b = k(k−1) must be integers, the following are obvious arithmetic necessary conditions for the existence of a BIBD(v; b; r; k; λ): (1) λ(v − 1) ≡ 0 (mod k − 1), (2) λv(v − 1) ≡ 0 (mod k(k − 1)).
    [Show full text]
  • Vertex-Transitive Q-Complementary Uniform Hypergraphs
    Vertex-transitive q-complementary uniform hypergraphs Shonda Gosselin∗ Department of Mathematics and Statistics, University of Winnipeg 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada [email protected] Submitted: Feb 11, 2010; Accepted: Apr 28, 2011; Published: May 8, 2011 Mathematics Subject Classification: 05C65, 05B05, 05E20, 05C85 Abstract For a positive integer q, a k-uniform hypergraph X = (V, E) is q-complementary 2 q−1 if there exists a permutation θ on V such that the sets E, Eθ, Eθ ,...,Eθ partition the set of k-subsets of V . The permutation θ is called a q-antimorphism of X. The well studied self-complementary uniform hypergraphs are 2-complementary. i For an integer n and a prime p, let n(p) = max{i : p divides n}. In this paper, we prove that a vertex-transitive q-complementary k-hypergraph of order n exists if and only if nn(p) ≡ 1 (mod qℓ+1) for every prime number p, in the case where q is prime, k = bqℓ or k = bqℓ + 1 for a positive integer b < k, and n ≡ 1(mod qℓ+1). We also find necessary conditions on the order of these structures when they are t-fold-transitive and n ≡ t (mod qℓ+1), for 1 ≤ t < k, in which case they correspond to large sets of isomorphic t-designs. Finally, we use group theoretic results due to Burnside and Zassenhaus to determine the complete group of automorphisms and q-antimorphisms of these hypergraphs in the case where they have prime order, and then use this information to write an algorithm to generate all of these objects.
    [Show full text]
  • An Introduction to Steiner Systems∗
    An introduction to Steiner systems∗ Mike Grannell and Terry Griggs, University of Central Lancashire, Preston The authors are both graduates of the University of London, and have been working together in combinatorial design theory for 15 years. Construction of the Steiner system S(5, 6, 108) described in this article was one of the first problems they tackled (unsuccess- fully) many years ago. but a return to it in 1991 proved successful. 1 Introduction Begin with a base set of nine elements, say the positive integers from 1 to 9 inclusive. Next consider the following subsets: 123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249 and 357. (Here, and elsewhere in this article, we will, when convenient, use the simpler notation abc for the set {a,b,c}.) Collectively the above subsets, which are more usually called blocks, have the property that every pair of elements of the base set is contained in precisely one of the blocks. Before proceeding further, readers should verify this fact for themselves. Such a collection of blocks is an example of a Steiner system and this particular configuration is usually denoted by S(2, 3, 9). It is quite easy to see what the three integers 2, 3 and 9 describe. Considering them in reverse order, the 9 gives the number of elements in the base set, and these can be any nine elements; we named them as the positive integers 1 to 9 inclusive only for convenience. The 3 gives the number of elements in each block and the 2 tells us that every pair of elements of the base set, i.e.
    [Show full text]
  • Kirkman's Schoolgirls Wearing Hats and Walking Through Fields Of
    ARTICLES Kirkman’s Schoolgirls Wearing Hats and Walking through Fields of Numbers EZRA BROWN Virginia Polytechnic Institute and State University Blacksburg, VA 24061 [email protected] KEITH E. MELLINGER University of Mary Washington Fredericksburg, VA 22401 [email protected] Fifteen young ladies at school Imagine fifteen young ladies at the Emmy Noether Boarding School—Anita, Barb, Carol, Doris, Ellen, Fran, Gail, Helen, Ivy, Julia, Kali, Lori, Mary, Noel, and Olive. Every day, they walk to school in the Official ENBS Formation, namely, in five rows of three each. One of the ENBS rules is that during the walk, a student may only talk with the other students in her row of three. These fifteen are all good friends and like to talk with each other—and they are all mathematically inclined. One day Julia says, “I wonder if it’s possible for us to walk to school in the Official Formation in such a way that we all have a chance to talk with each other at least once a week?” “But that means nobody walks with anybody else in a line more than once a week,” observes Anita. “I’ll bet we can do that,” concludes Lori. “Let’s get to work.” And what they came up with is the schedule in TABLE 1. TABLE 1: Walking to school MON TUE WED THU FRI SAT SUN a, b, e a, c, f a, d, h a, g, k a, j, m a, n, o a, i, l c, l, o b, m, o b, c, g b, h, l b, f, k b, d, i b, j, n d, f, m d, g, n e, j, o c, d, j c, i, n c, e, k c, h, m g, i, j e, h, i f, l, n e, m, n d, e, l f, h, j d, k, o h, k, n j, k, l i, k, m f, i, o g, h, o g, l, m e, f, g TABLE 1 was probably what T.
    [Show full text]
  • Combinatorial Designs Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo Combinatorial Designs Constructions and Analysis
    Combinatorial Designs Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo Combinatorial Designs Constructions and Analysis Springer Douglas R. Stinson School of Computer Science University of Waterloo Waterloo ON N2L 3G1 Canada [email protected] Library of Congress Cataloging-in-Publication Data Stinson, Douglas R. (Douglas Robert), 1956– Combinatorial designs : constructions and analysis / Douglas R. Stinson. p. cm. Includes bibliographical references and index. ISBN 0-387-95487-2 (acid-free paper) 1. Combinatorial designs and configurations. I. Title QA166.25.S75 2003 511′.6—dc21 2003052964 ISBN 0-387-95487-2 Printed on acid-free paper. © 2004 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. 987654321 SPIN 10826487 Typesetting: Pages were created by the author using the Springer 2e with svmono and author macros. www.springer-ny.com Springer-Verlag New York Berlin Heidelberg A member of BertelsmannSpringer Science+Business Media GmbH To Ron Mullin, who taught me design theory Foreword The evolution of combinatorial design theory has been one of remarkable successes, unanticipated applications, deep connections with fundamental mathematics, and the desire to produce order from apparent chaos.
    [Show full text]
  • Structural Parameters in Combinatorial Objects
    DISS. ETH No. 15901, 2005 Structural Parameters in Combinatorial Objects A dissertation submitted to the Swiss Federal Institute of Technology Zurich¨ for the degree of Doctor of Technical Sciences presented by Yoshio Okamoto Master of Systems Science, the University of Tokyo, Japan born July 22, 1976 in Hekinan, Japan citizen of Japan submitted to Prof. Emo Welzl, ETH Zurich,¨ examiner Prof. Komei Fukuda, ETH Zurich,¨ co-examiner ii iii Acknowledgements First of all, I would like to express my sincere gratitude to my supervi- sor Emo Welzl. It was a great opportunity for me to work at his teach- ing/research group in Zurich. His persistent encouragement and sup- port were really helpful, and his way of looking at problems, way of presenting materials, and everything were very exciting to me. He was also a speaker of the Berlin/Zurich Joint Graduate Program “Combina- torics, Geometry, and Combinatorics” (CGC) financed by ETH Zurich and German Science Foundation. Without this program, I would not have imagined how I completed the study. My sincere gratitude also goes to Komei Fukuda who kindly ad- mitted to be a co-referee. Indeed, he was the first person who I made a contact when I tried to move to Zurich. At that time we did not know each other; Nevertheless he was so kind that he gave a lot of informa- tion and encouraged me to come to Zurich. Some of the chapters in the thesis are based on joint papers with the following people: Vladimir De˘ıneko, Michael Hoffmann, Kenji Kashi- wabara, Masataka Nakamura, Takeaki Uno and Gerhard Woeginger.
    [Show full text]