Patchogue River Maritime Center Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Long Island South Shore Estuary Reserve Coordinated Water Resources Monitoring Strategy Long Island SOUTH SHORE ESTUARY RESERVE
Long Island South Shore Estuary Reserve Coordinated Water Resources Monitoring Strategy New York Suffolk Nassau Long Island SOUTH SHORE ESTUARY RESERVE Open-File Report 2017–1161 U.S. Department of the Interior U.S. Geological Survey Cover. The Long Island South Shore Estuary Reserve (orange) stretches west to east from the Nassau-Queens county line to the town of Southampton. South to north, it extends from mean high tide on the ocean side of the barrier islands to the inland limits of the watersheds that drain into the bays. Image courtesy of the New York State Department of State Office of Planning, Development and Community Infrastructure. Long Island South Shore Estuary Reserve Coordinated Water Resources Monitoring Strategy By Shawn C. Fisher, Robert J. Welk, and Jason S. Finkelstein Prepared in cooperation with the New York State Department of State Office of Planning, Development and Community Infrastructure and the South Shore Estuary Reserve Office Open-File Report 2017–1161 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2018 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. -
Great South Bay Ecosystem-Based Management Plan
Great South Bay Ecosystem-based Management Plan Prepared by The Nature Conservancy, Long Island Chapter Prepared for The New York State Department of State with funds provided by the Environmental Protection Fund 2008 Draft Final 2012 EXECUTIVE SUMMARY Great South Bay (GSB) on the South Shore of Long Island is teeming with life, but it is also degraded compared to historical conditions. Conservation and management measures are needed to preserve and restore the health of the bay. The Long Island Chapter of the Nature Conservancy (TNC), under contract to the New York State Department of State (DOS), developed this Ecosystem-based Management (EBM) Plan for Great South Bay. Ecosystem-based Management is a management approach that considers the entire ecosystem, including humans. It promotes ecosystem viability and integrity, biodiversity, sustainability, and social values and principles. TNC’s analysis relies on choosing a set of ecological surrogates, representative species, and groups of species, or habitat types that can represent the ecological status of the biodiversity in Great South Bay. For each surrogate, specific measurable objectives are developed that describe the intended ecological state of Great South Bay with respect to each surrogate. The measurable objectives are achieved through the implementation of strategic actions and action steps described in the plan. Overarching objectives and strategic actions are also developed to address water quality, global climate change, and education. The surrogates chosen to represent the GSB ecosystem in the plan are: Hard clams Salt marshes Seagrass meadows Barrier island complex Predatory fishes Winter flounder Alewives Piping plovers Horseshoe crabs This report was originally drafted in 2008 followed by an update in 2012 to each surrogate’s current status, strategic actions and action steps. -
Carmans, Patchogue, and Swan Rivers
Estuaries and Coasts: J CERF DOI 10.1007/s12237-007-9010-y Temporal and Spatial Variations in Water Quality on New York South Shore Estuary Tributaries: Carmans, Patchogue, and Swan Rivers Lori Zaikowski & Kevin T. McDonnell & Robert F. Rockwell & Fred Rispoli Received: 9 April 2007 /Revised: 23 August 2007 /Accepted: 14 September 2007 # Coastal and Estuarine Research Federation 2007 Abstract The chemical and biological impacts of anthro- magnitude higher than SR and CR sediments. Benthic pogenic physical modifications (i.e., channelization, dredg- invertebrate assessment of species richness, biotic index, ing, bulkhead, and jetty construction) to tributaries were and Ephemeroptera, Plecoptera and Trichoptera richness assessed on New York’s Long Island South Shore Estuary. indicated that PR was severely impacted, SR ranged from Water-quality data collected on Carmans, Patchogue, and slightly to severely impacted, and CR ranged from non- Swan Rivers from 1997 to 2005 indicate no significant impacted to slightly impacted. Diversity and abundance of differences in nutrient levels, temperature, or pH among the plankton were comparable on SR and CR, and were rivers, but significant differences in light transmittance, significantly higher than on PR. The data indicate that dissolved oxygen (DO), salinity, and sediments were nutrients do not play a major role in hypoxia in these observed. Patchogue River (PR) and Swan River (SR) were estuarine tributaries but that physical forces dominate. The significantly more saline than Carmans River (CR), PR and narrow inlets, channelization, and abrupt changes in depth SR had less light transmittance than CR, and both exhibited near the inlets of PR and SR foster hypoxic conditions by severe warm season hypoxia. -
5. Appendix D
Long Island Duck Farm History and Ecosystem Restoration Opportunities Suffolk County, Long Island, New York February 2009 US Army Corps of Engineers Suffolk County, NY New York District APPENDIX D APPENDIX D Duck Farm Industry and Impacts Report prepared by Suffolk County Department of Planning H. Lee Dennison Building - 4th Floor 100 Veterans Memorial Highway P.O. Box 6100 Hauppauge, New York 11788 DeWitt S. Davies, Ph.D. Chief Environmental Analyst Duck Farm Industry Impacts on the Environment Introduction As documented in the historical overview section, the duck farm industry in Suffolk County was an extremely intensive land use along stream and bay shorelines. Inventory work by the Department of Planning indicates that approximately 2,000 acres of upland property and almost 20 miles of shoreline along freshwater creeks/rivers and estuary tributaries – primarily in the Towns of Brookhaven, Riverhead and Southampton – were utilized during the last century in Suffolk County for duck production. The impacts of duck farming were dramatic, both on-site and off-site. Extensive landform alterations were made to construct animal pens, feed lots and swim ponds, which were often located in or directly adjacent to streams/coves of the bays. Waste effluent discharges from the farms created thick organic matter deposits, degraded water quality and altered phytoplankton and benthic population in near-by surface waters. Duck Farms – An Intensive Land Use The significance of the impacts is reflected by the magnitude of the industry and the waste load generated. Effluent waste loadings from the farms in the form of suspended solids, nutrients and coliform bacteria were huge, especially prior to the required use of treatment technology under water pollution control laws. -
Breaking Through
Photo courtesy of George Proios Breaking Through Nothing is more constant than in business and municipal practices that change itself… may have led to a decline in commercial shellfish populations. And nowhere can this be demonstrated more graphically than along Long Island’s barrier Looking long-term at the effects that beaches where the dynamic interactions future breaches along barrier beaches between shifting sands and crashing ocean might have on these estuarine ecosys- waves constantly reshape the thin strands of tems, New York Sea Grant has funded beach and periodically form new inlets. When four novel research projects. Each has new inlets form, salty water from the ocean a different approach and thus provides a enters the calmer, shallow waters of Long different piece of the puzzle. Island’s south shore estuaries (LISSE), po- Continued on page 4 tentially changing the delicate balance of the estuaries’ ecosystems. In recent decades, Breaking Through page 1 by Patrick Dooley and Barbara A. Branca each of these estuarine ecosystems has Funding Breakthrough Research page 3 by Barbara A. Branca, Patrick Dooley already undergone change due to increased and Lane Smith community development along Long Island’s NYSG a Sounding Board for Governor on Ocean Report page 6 populated south shore coupled with changes by Barbara A. Branca and Jack Mattice Are Marshes Losing Ground? page 7 by Barbara A. Branca CoastWatch: page 8 Great Lakes Student Summit by Paul C. Focazio Botulism Update page 10 by Helen Domske and Lane Smith Currents Stakeholders Set Great Lakes Priorities Paul C. Focazio page 12 Earthstock 2004 by Susan M. -
Chapter 2: Brown Tide Management Plan
Peconic Estuary Program C H A P T E R TWO BROWN TIDE MANAGEMENT PLAN OBJECTIVES 1) Determine the chemical, physical and biological factors responsible for producing, sustaining and ending blooms of the Brown Tide organism, Aureococcus anophagefferens. 2) Determine what management actions can be undertaken to prevent or, if that is not possible, to mitigate the effects of recurrent Brown Tide blooms on the ecosystem and economy of the Peconics. C H A P T E R T W O 2-1 Peconic Estuary Program CCMP MEASURABLE GOALS The PEP’s measurable goals with respect to Brown Tide blooms include: • Continue to better coordinate, focus, and expand Brown Tide research efforts (measured by funding appropriated, frequency of Brown Tide symposiums, frequency of updating the Brown Tide Workplan and coordinations within the Brown Tide Steering Committee). [See Action B-1] • Continue the current level of water quality sampling in the Peconic Estuary (measured by the number and frequency of samples taken per year and the number of bays and peripheral embayments sampled). Currently, the Suffolk Department of Health Services conducts biweekly monitoring at 32 stations in the Peconic Estuary throughout the year, resulting in over 830 samples taken annually. [See Action B-1] Measurable goals related to natural resources are found in the Habitat and Living Resources Chapter (Chapter 4). C H A P T E R T W O 2-2 Peconic Estuary Program CCMP INTRODUCTION Brown Tide is a marine microalgal bloom. Microalgae, or phytoplankton, are microscopic, single- cell plants that are found in all natural freshwater and marine ecosystems. -
Revised Draft Subwatersheds Wastewater Plan Executive Summary
REVISED DRAFT SUBWATERSHEDS WASTEWATER PLAN EXECUTIVE SUMMARY “We are in a county that will no longer allow our water quality crisis to go unaddressed, but will come together to Reclaim Our Water” Suffolk County Executive Steve Bellone 2014 State of the County Suffolk County Department of Health Services August 2019 This document was prepared with funding provided by the New York State Department of Environmental Conservation as part of the Long Island Nitrogen Action Plan and by New York State Department of State under the Environmental Protection Fund. Subwatersheds Wastewater Plan • Executive Summary Table of Contents Executive Summary ......................................................................................................... 5 1.0 Introduction ................................................................................................................................................................. 5 1.1 Background ........................................................................................................................................................ 5 1.2 Wastewater Management in Suffolk County ........................................................................................ 7 1.3 Innovative/Alternative Onsite Wastewater Treatment Systems ................................................ 9 1.4 Sewage Treatment Plants and Sewering ............................................................................................ 13 1.4.1 Sewer Expansion Projects .......................................................................................................... -
WHOI-R-93-006 Anderson, D.M. an Immunof
J ournal of Plankton Research Vo1.15 no.5 pp.563-580, 1993 An immunofluorescent survey of the brown tide chrysophyte A ureococcus anophagefferens along the northeast coast of the United States Donald M.Anderson, Bruce A.Keafer, David M.Kulis, Robert M.Waters 1 and Robert Nuzzi 1 Woods Hole Oceanographic Institution, Biology Department, Woods Hole, MA 02543 and 1 Suffolk County Department of Health Services, Evans K. Griffing County Center, Riverhead, NY JJ 901, USA Abst ract. Surveys were conducted along the northeast coast of the USA, be1ween Po rtsmouth, NH, and I he Chesapeake Bay in 1988 and 1990, to determine the population distribulion of Aureococcus anoplwgefferens, lhe chrysophyte responsible for massive and destructive 'brown tides' in Long Island and Narraganselt Bay beginning in 1985. A species-specific immunofluorescent technique was used to screen water samples, with positive identification possible at cell concentrations as low as 10- 1 20 cells ml - • Bolh years, A.anophagefferens was detected at numerous stations in and around Long Island and Barnegat Bay, J , typically at high cell concentrations. To the north and south of this 'center·, nearly half of the remaining stations were positive for A.anophagefferens, but the cells were always at very low cell concentrations. Many of the positive identifications in areas distant from Long Island were in waters with no known history of harmful brown tides. The species was present in both open coastal and estuarine locations, in salinities between 18 and 32 prac1ical salinity units (PSU). The observed population distributions apparently still reflect the massive 1985 outbreak when this species first bloomed, given the number of positive locations and high abundance of A.anophagef ferens in the immediate vicinity of Long Island. -
Surface Waters Contributing Areas
Fishers Island Sound Legend SUFFOLK COUNTY, NEW YORK Suffolk County Land Use PriorityUnsewered - 1* Residential*** Huntington Long Island Sound Bay PriorityUnsewered - 2* Residential*** Lloyd Harbor Rd Long Island Sound Baseflowyear 0-2 Con tributingAreas to SurfaceWaters, d r R Main Rd e 1000’arounbuffer freshwater d lakes andpon ds iv R w Cold Northport Bay ro ar Spring W N N E Shore Rd e Baseflowyear 2-25 Con tributingAreas to SurfaceWaters North Rd c Harbor k Main St R Orient Harbor d Smithtown Bay * Priority 1 on this map is depicted by medium and high density residential parcels falling either partially or entirely within the 0-2 Year Baseflow Front St o e Main Rd Av d ** Priority 2 on this map is depicted by medium and high density residential parcels ew Mill Pond R Main St vi nga d Block Fort S alo n falling either partially or entirely within the 2-25 Year Baseflow u ÂC25A Main St C25A Port o A Â Jefferson S 25 Great Pond Island te *** Unsewered Residential on this map is depicted by medium density residential N ou F SHELTER R e 5 N r e 2 r (>1 to < 5 du/acre) and high density residential (>or equal to 5 du/acre) t o Sound u y o s t r R ÂC108 Old Dock Rd R a d Woodbury Rd Hallock Ave n d Route 25A d N Ferry Rd ISLAND ulaski R Bridge Ln P P k E Main St w Gardiners y Brander Pkwy e v A ÂCSM Oregon Rd Cox Ln M Bay k Route 112 r a N Bayview Rd i S Ferry Rd o n Y Ba d Miller Place Yaphank Rd SOUTHOLD yv w i R e Rd Menantic e y W Jericho Tpk ntr w e N u Miller Place Rd Mill Ln R HUNTINGTON o Canal Rd Route 25A d SMITHTOWN C ÂC25A ÂC25 -
Village of Patchogue Revitalization, Economic Impact Analysis Prepared For: Long Island Regional Planning Council
Village of Patchogue Revitalization, Economic Impact Analysis Prepared for: Long Island Regional Planning Council ECONOMIC AND REAL ESTATE ANALYSIS FOR SUSTAINABLE LAND USE OUTCOMES™ [ProjectVillage of Name] Patchogue Economic and Fiscal Impact Analysis Study December 19, 2018 Table of Contents Executive Summary 4 Background Review 21 A Brief History of Patchogue’s Economic Rise, Fall & Rise 23 Timeline of Public & Private Investments in Patchogue 28 Interviews with Public & Private Sector Representatives 38 Economic Impact Analysis 48 Development Construction 53 New Non-Local Household Spending 59 New Business Operations 66 Fiscal Impacts 79 Multi-Family Housing Development Projects Built Since 2004 80 Prospective Large-Scale Development Projects 95 Documentation of the Increase in Assessed Property Values 114 Comparative Business, Employment & Investment Trends 118 Appendix 129 4WARD PLANNING LLCINC Page 2 [ProjectVillage of Name] Patchogue Economic and Fiscal Impact Analysis Study December 19, 2018 Acknowledgements The Long Island Regional Planning Council acknowledges and appreciates the support of the Suffolk County Economic Development Corporation in producing this Study. 4ward Planning wishes to thank the following individuals for providing invaluable insights and for, particularly, helping to facilitate the study process over a period of several months: Mayor Paul Pontieri Marian H. Russo, Executive Director, Patchogue Community Development Agency (CDA) David Kennedy, Executive Director, Village of Patchogue Chamber of Commerce We also thank the Town of Brookhaven for its generous assistance with identifying critical property tax and revenue data. 4WARD PLANNING LLCINC Page 3 Executive Summary ECONOMIC AND REAL ESTATE ANALYSIS FOR SUSTAINABLE LAND USE OUTCOMES ™ [ProjectVillage of Name] Patchogue Economic and Fiscal Impact Analysis Study December 19, 2018 Introduction The redevelopment of the Village of Patchogue has been one of Long Island’s foremost community improvement success stories. -
Long Island Duck Farm History and Ecosystem Restoration Opportunities Suffolk County, Long Island, New York
Long Island Duck Farm History and Ecosystem Restoration Opportunities Suffolk County, Long Island, New York February 2009 US Army Corps of Engineers Suffolk County, NY New York District Table of Contents Section Page Table of Contents............................................................................................................................ 1 List of Appendices .......................................................................................................................... 1 1.0 Introduction.............................................................................................................................. 1 2.0 Purpose..................................................................................................................................... 1 3.0 History of Duck Farming on Long Island................................................................................ 1 4.0 Environmental Impacts ............................................................................................................. 2 4.1 Duck Waste Statistics ....................................................................................................... 2 4.2 Off-site Impacts of Duck Farm Operation........................................................................ 3 4.2.1 Duck Sludge Deposits.................................................................................................... 4 4.3 On-site Impacts of Duck Farm Operation......................................................................... 5 5.0 -
Long Island Tidal Wetlands Trends Analysis
LONG ISLAND TIDAL WETLANDS TRENDS ANALYSIS Prepared for the NEW ENGLAND INTERSTATE WATER POLLUTION CONTROL COMMISSION Prepared by August 2015 Long Island Tidal Wetlands Trends Analysis August 2015 Table of Contents TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................................................................... 1 INTRODUCTION ..................................................................................................................................................... 5 PURPOSE ...................................................................................................................................................................... 5 ENVIRONMENTAL AND ECOLOGICAL CONTEXT ..................................................................................................................... 6 FUNDING SOURCE AND PARTNERS ..................................................................................................................................... 6 TRENDS ANALYSIS .................................................................................................................................................. 7 METHODOLOGY AND DATA ................................................................................................................................... 9 OUTLINE OF TECHNICAL APPROACH ................................................................................................................................... 9 TECHNICAL OBJECTIVES