Herbarium Management- Role in Plant Genetic Resources Study

Total Page:16

File Type:pdf, Size:1020Kb

Herbarium Management- Role in Plant Genetic Resources Study Herbarium Management: Methods and Current Trends Herbarium of Cultivated Plants National Division of Plant Exploration and Germplasm Collection ICAR-National Bureau of Plant Genetic Resources Pusa Campus, New Delhi 110012, India Training Programme on Herbarium Management: Methods and Current Trends ICAR-NBPGR, New Delhi, July 15-20, 2019 For the official from: The Directorate of Seed Testing and Certification Ministry of Agriculture, Bagdad Government of Iraq Division of Plant Exploration and Germplasm Collection ICAR-National Bureau of Plant Genetic Resources Pusa Campus, New Delhi 110012, India Citation Anjula Pandey (2019) Herbarium Management: Methods and Current Trends. The Training Manual, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India Technical Assistance: Shashi K Sharma and Rita Gupta Layout and Design: Shashi K Sharma Disclaimer: This publication contains information provided by various authors “as it is” with editorial inputs. Contents of some chapters have been sourced by the authors from their prior publications, and ICAR- NBPGR is not liable for any copyright infringement whatsoever. © The Director, ICAR-National Bureau of Plant Genetic Resources New Delhi 110012, India E-mail: [email protected] Website: http//nbpgr.ernet.in Contents S.No. Title Page No. About the Training Manual ---- i 1 Herbarium Management- Role in Plant Genetic Resources Study 1 Anjula Pandey 2 Methods for Management of Herbarium 28 Anjula Pandey, K Pradheep and Rita Gupta 3 Taxonomic Literature: Role in Plant Systematics Study 48 Anjula Pandey and K Pradheep 4 The relevance of Field and Ecological Studies in Herbarium 58 E. Roshini Nayar 5 Modern Tools in Plant Taxonomy 65 S Rajkumar 6 Chemotaxonomy - A Tool for Taxonomic Delineation and 80 Identification of Plant Genetic Resources Poonam Suneja, Rakesh Bhardwaj* and Anjula Pandey 7 Applications of Geographic Information Systems (GIS) Tools in Harbarium 87 Studies DP Semwal, Anjula Pandey, Rita Gupta and NS Panwar 8 Illustrative Field Aids for Identification of Plants 93 Anjula Pandey, S Nivedhitha and Pavan Malav 9 Floras, Monographs, Taxonomic Revisions and Identification Keys 102 Anjula Pandey 10 Biosystematic Studies on Crop Plant Taxa 113 Anjula Pandey and K Pradheep 11 Digitizing Specimens in A Herbarium: Procedures and Approaches 126 Anjula Pandey, Sunil Archak, Rita Gupta and ER Nayar 12 Exploration and Germplasm Collection of Plant Genetic Resources: 137 Prospects and Procedures SP Ahlawat and Anjula Pandey 13 Field Visits: Guidelines for Execution 150 KC Bhatt, RS Rathi and Anjula Pandey Training Programme ii List of the Participants-Herbarium Management iv Faculty members and other contact persons v Committees to Organize the Training Programme vi About the Training Manual ---- National and international databases serve as biodiversity information resources and collectively provide data for visualization analysis of patterns of biodiversity. Amongii these data records associated with herbarium specimens’ label have now become available for large scale innovative research at the global level. Despite realizing the value of herbarium decades ago only in the past few years the knowledge hidden with the herbarium repositories the potential resources for new findings have been explored now using e-resources and vast floristic literature. Various global database facilities such as the Global Biodiversity Information Facility (GBIF), the Atlas of Living Australia (ALA), the US Geological Survey’s portal (Biodiversity Information Serving Our Nation; BISON), and iDigBio (Integrated Digitized Biocollections) provide digital biodiversity data, including information from herbarium specimens. Digitized herbarium specimen data serve as resources for synthetic analyses, link the phylogenetic, climatological and genomic resources to address several unresolved queries in plant sciences. Researchers in plant systematics are now benefitted with the enhanced understanding of diversity distribution, plant collecting strategies, seed storage behaviour, and taxonomic identification. Value of herbarium as a powerful tool in plant genetic resources programme was realised as early as 1948 when a build-up of herbarium voucher specimens generated through research activity was maintained as referral collection in the Botany Department of IARI (which later named as the Plant Introduction Division, IARI, Pusa). Later, the institute was rechristianization as ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR) in 1976 and since then it has been instrumental in disseminating knowledge on use of herbarium through teaching and training programmes, formal and informal technical discussions, brainstorming sessions and know-how on herbarium methodology. In continuation to these efforts, the ICAR-NBPGR is now organizing a short training course on “Herbarium Management” for participants from Directorate of Seed Testing and Certification, Ministry of Agriculture, Baghdad, Iraq with financial support from Government of Iraq from July15-20, 2019. For the benefit of participants a training manual entitled “Herbarium Management: Methods and Current Trends” is published with an overall perspective on the management of the herbaria. A total of eleven chapters including practical exercises and demonstrations will contribute towards a better understanding of herbarium management. Use of taxonomic keys in plant identification, herbarium and field methods, and biosystematics tools in species delimitation will help in build- up of the herbarium, besides enhancing their expertise. Topics like advances in modern tools, illustrative guides and herbarium digitization will help to boost the confidence of participants in setting up of state-of-the-art facility with their organisation(s). This training would sensitize the participants to create effective interest in the management of herbarium. We are highly thankful to the authors for contributing the contents of various chapters and bringing their views in this form. We hope that this publication will serve as a valuable reference to the course trainees as well as other users associated with PGR sciences. (Anjula Pandey) i Herbarium Management- Role in Plant Genetic Resources Study (Anjula Pandey) 1 Herbarium Management- Role in Plant Genetic Resources Study Anjula Pandey Division of Plant Exploration and Germplasm Collection ICAR-National Bureau of Plant Genetic Resources New Delhi 110 012, India Introduction There are approximately 4,000 recognized active global herbaria collectively holding 35,00,00,000 herbarium specimens. India represents over 3.5 million herbarium specimens including~23,000 type specimens (source:http://sciweb.nybg.org/science2/IndexHerbariorum.asp). These major global herbaria are committed to providing herbarium of economic species accessible to users (K, P, MO, S, B, UC/JEPS), and yet some others focus on regional flora (F,BM, PE, E, CAL). Among the cultivated plant herbaria, only a few of them are rich in the representation of cultivated plants (H- cultivated ornamentals and The Gatersleben Herbarium (GAT- Crop Plant Genetics mainly). GAT is located in the Department of Genebank of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) and is one of the largest specialized herbaria which serve as a source of reference and working material for the reproduction of accessions maintained in the genebank and other institutional research programmes. The holdings include over 0.430 million specimens of cultivated plants and its wild relatives, seed and fruit collection (about 0.1 million samples) and the spike collection (55,000 samples) (http://www.ipk-gatersleben.de/en/gbisipk- gaterslebendegbis-i/herbarium/).List of selected herbaria with significant information is given in Appendix I. Management of a herbarium includes all the activities pertaining to build-up, maintenance and research undertaken to establish a facility. While developing a herbarium state-of-the-art facility, the activity begins with the build-up of the collection followed by all other activities. A herbarium is a repository of plant specimens to serve as valuable resources for plant and data used for scientific research. For a quality specimen, an ideally dried herbarium should have character representation (vegetative characters: roots, tubers, bulbs and rhizome, leaf, stipule, spine, bark, etc. and floral: inflorescence, flower- spathe, scape, stamen, sepal, petal/tepals; and fruit characters: pericarp, 1 Herbarium Management- Role in Plant Genetic Resources Study (Anjula Pandey) placentation, seed) needed for taxonomic studies (Lawrence 1951; Davis and Heywood 1963; Holmgren and Holmgren 1998). Information on plant species with respect to the area of availability, variability pattern, flowering/fruiting time, status on rare/endangered/endemism, other ecological features, economic uses, indigenous traditional knowledge (ITKs), etc. gathered from herbarium label data serves as resource for basic and applied research, referral use and for educational programme. The information available on the herbarium label could be helpful in the planning and management of genetic resources and may serve the users in various ways. ‘Voucher specimens’ used in experimental studies as well as those collected from diverse areas and deposited in herbaria can be used for further study by others. Herbaria located in teaching/ educational institutions will have specimens generated through basic study and applied sciences. On the other hand, institutions dealing with
Recommended publications
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • Assessment of Plant Diversity for Threat Elements: a Case Study of Nargu Wildlife Sanctuary, North Western Himalaya
    Ceylon Journal of Science 46(1) 2017: 75-95 DOI: http://doi.org/10.4038/cjs.v46i1.7420 RESEARCH ARTICLE Assessment of plant diversity for threat elements: A case study of Nargu wildlife sanctuary, north western Himalaya Pankaj Sharma*, S.S. Samant and Manohar Lal G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Himachal Unit, Mohal- Kullu-175126, H.P., India Received: 12/07/2016; Accepted: 16/02/2017 Abstract: Biodiversity crisis is being experienced losses, over exploitation, invasions of non-native throughout the world, due to various anthropogenic species, global climate change (IUCN, 2003) and and natural factors. Therefore, it is essential to disruption of community structure (Novasek and identify suitable conservation priorities in biodiversity Cleland, 2001). As a result of the anthropogenic rich areas. For this myriads of conservational pressure, the plant extinction rate has reached approaches are being implemented in various ecosystems across the globe. The present study has to137 species per day (Mora et al., 2011; Tali et been conducted because of the dearth of the location- al., 2015). At present, the rapid loss of species is specific studies in the Indian Himalayas for assessing estimated to be between 1,000–10,000 times the ‘threatened species’. The threat assessment of faster than the expected natural extinction rate plant species in the Nargu Wildlife Sanctuary (NWS) (Hilton-Taylor, 2000). Under the current of the northwest Himalaya was investigated using scenario, about 20% of all species are likely to Conservation Priority Index (CPI) during the present go extinct within next 30 years and more than study.
    [Show full text]
  • Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
    THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by *By Nigel Maxted and Shelagh Kell The content of this document is entirely the responsibility of the authors, and does not .necessarily represent the views of the FAO, or its Members 2 * School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 ACKNOWLEDGEMENTS 7 PART 1: INTRODUCTION 8 1.1 Background and scope 8 1.2 The global and local importance of crop wild relatives 10 1.3 Definition of a crop wild relative 12 1.4 Global numbers of crop
    [Show full text]
  • Types of Garcinia L. (Clusiaceae) in the Herbarium W (Naturhistorisches Museum Wien) 173-181 ©Naturhistorisches Museum Wien, Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2017 Band/Volume: 119B Autor(en)/Author(s): Marinho Lucas Cardoso Artikel/Article: Types of Garcinia L. (Clusiaceae) in the herbarium W (Naturhistorisches Museum Wien) 173-181 ©Naturhistorisches Museum Wien, download unter www.zobodat.at Ann. Naturhist. Mus. Wien, B 119 173–181 Wien, Jänner 2017 Types of Garcinia L. (Clusiaceae) in the herbarium W (Naturhistorisches Museum Wien) L.C. Marinho* Abstract Garcinia L. is the second largest genus in Clusiaceae LINDL.; however, there are few recent taxonomic works about it, except for the taxonomic works conducted in Africa. For the development of sound taxonomic work and to allow nomenclatural changes and typifications, a thorough analysis of the type specimens of validly published names is necessary. In the herbarium W (Naturhistorisches Museum Wien) nomenclatural type specimens for 50 taxons of Garcinia (Clusiaceae) are identified. Data from: the original publication, herbarium number and, where possible, the taxonomic status are provided. Key words: Clusiaceae; Clusianthemum, Rheedia, Ochrocarpos, Terpnophyllum, Xanthochymus; types. Zusammenfassung Garcinia L. ist die zweitgrößte Gattung der Familie Clusiaceae LINDL. Außer einer rezenten Bearbeitung der afrikanischen Arten gibt es noch keine umfassenden taxonomischen Abhandlungen. Für eine fundierte taxonomische Bearbeitung ist es notwendig, Typus-Material zu allen publizierten Namen zu analysieren, um die Nomenklatur klären zu können. Im Herbarium W (Naturhistorisches Museum Wien) wurden Typus- Belege für 50 Taxa der Gattung Garcinia gefunden und gekennzeichnet. Im Folgenden wird eine Auflistung der Belege inklusive Protolog-Zitat, Herbariumsnummer und, wo es möglich war, auch des taxonomische Status des jeweiligen Taxons angegeben.
    [Show full text]
  • Management of Cercospora Leaf Spot of Indian Spinach (Basella Alba L.) with BAU Bio-Fungicide and a Plant Growth Promoting Hormone
    Universal Journal of Plant Science 4(4): 43-49, 2016 http://www.hrpub.org DOI: 10.13189/ujps.2016.040401 Management of Cercospora Leaf Spot of Indian Spinach (Basella alba L.) with BAU Bio-fungicide and a Plant Growth Promoting Hormone Md. Mohidul Hasan1,*, Nazia Binta Islam1, Shamima Naznin1, Md. Mobinul Islam1, 2 Kishowar-E-Mustarin 1Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Bangladesh 2Wheat Research Centre, Bangladesh Agricultural Research Institute Joydebpur, Bangladesh Copyright©2016 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Trichoderma based BAU-biofungicide, Basellaceae is an indigenous, rapidly growing, tropical leafy chemical Carbendazim and a synthetic plant growth vegetable [1,2] commonly grown as backyard plant in the promoting (PGP) hormone have been used to study their home gardens. It is originated from India or Indonesia [3], effect on Cercospora leaf spot of Indian spinach. Number of however; it is also popular in tropical and subtropical region leaf, number of infected leaf, disease incidence, disease including Asia, America, Africa, Madagascar etc. [2]. The severity, area under disease progress curve (AUDPC), plant vegetable has other interesting common names in different height and plant weight were measured and significant region like Ceylon spinach, Malabar spinach, saan choy variations was found against different treatment
    [Show full text]
  • Processing and Preservation Qualities of Value Added Products Based on Garcinia Cambogia [Malabar Tamarind]
    IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 8, Issue 1 Ver. III (Jan. 2014), PP 01-09 www.iosrjournals.org Processing and preservation qualities of value added products based on Garcinia cambogia [Malabar Tamarind] Aparna S Gopakumar1, Dr. Kavita M S2 1(Research Scholar, Department of Home Science, St. Teresa’s College/ Mahatma Gandhi University, India) 2(Asst. Professor, Department of Home science, Govt. College for Women/Kerala University, India) Abstract : Garcinia cambogia is a sub tropical fruit found in the Western Ghats of India as well as in South- East Asia. Garcinia or Malabar tamarind has greater dietary importance and it is widely utilized in the preparation of refreshing drinks, for curing fishes, in fish curries etc. Garcinia had proven medicinal effects and is used in treating conditions like flatulence, oedema, chronic alcoholism, dysentery, diarrhea, obesity etc. The nutraceutical effects of Garcinia cambogia is due to the presence of an acid known as HCA or (-) – hydroxy citric acid in it. This higher hydroxy citric acid content in Garcinia makes it an effective anti- obesity agent because of its appetite reducing property by inhibiting the enzyme ATP- citrate lyase which helps in the conversion of carbohydrates to glycogen. Even though Garcinia cambogia had a number of nutraceutical effects, its use is under exploited in our country which resulted in the wastage of these fruits during the seasonal glut. Processing techniques like osmotic pressure, controlled pH, dehydration and utilization of fruits in the preparation of fruit beverages were selected for the preparation of value added products using Garcinia cambogia.
    [Show full text]
  • Bioavailability of Iron from Basella Alba and Amaranthus Hybridus Leaves Supplemented Diet in Iron Deficient Anaemic Albino Rats
    BIOAVAILABILITY OF IRON FROM BASELLA ALBA AND AMARANTHUS HYBRIDUS LEAVES SUPPLEMENTED DIET IN IRON DEFICIENT ANAEMIC ALBINO RATS. BY Ceaser Antiya, MOSES DEPARTMENT OF BIOCHEMISTRY FACULTY OF SCIENCE AHMADU BELLO UNIVERSITY ZARIA JANUARY, 2016 i BIOAVAILABILITY OF IRON FROM BASELLA ALBA AND AMARANTHUS HYBRIDUS LEAVES SUPPLEMENTED DIET IN IRON DEFICIENT ANAEMIC ALBINO RATS. BY Ceaser Antiya MOSES, B.SC BIOCHEMISTRY (A.B.U) 2011 MSc/SCIE/44812/2012-2013 A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTERS DEGREE IN BIOCHEMISTRY DEPARTMENT OF BIOCHEMISTRY FACULTY OF SCIENCE AHMADU BELLO UNIVERSITY, ZARIA NIGERIA JANUARY, 2016 ii DECLARATION I hereby declare that the work in this dissertation entitled ―BIOAVAILABILITY OF IRON FROM BASELLA ALBA AND AMARANTHUS HYBRIDUS LEAVES SUPPLEMENTED DIET IN IRON DEFICIENT ANAEMIC ALBINO RATS” has been performed by me in the Department of Biochemistry under the supervision of Mr. O. A. Owolabi and Prof. E. Oyinke. The information herein derived from literature has been duly acknowledged in the text and a list of references provided. No part of this dissertationwas previously presented for another degree or diploma at any university to the best of my knowledge. …………………………………. ……………………… …………………… Moses Ceaser Antiya Signature Date iii CERTIFICATION This dissertation entitled ―BIOAVAILABILITY OF IRON FROM BASELLA ALBA AND AMARANTHUS HYBRIDUS LEAVES SUPPLEMENTED DIET IN IRON DEFICIENT ANAEMIC ALBINO RATS” by Ceaser, Antiya MOSES meets the regulations governing the award of the degree of MASTER of Science Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation.
    [Show full text]
  • Torr, 2002. Eradication of Rabbits and Mice from Subantarctic Enderby and Rose Islands. in Turning
    Eradication of rabbits and mice from subantarctic Enderby and Rose Islands N. Torr Department of Conservation, P.O. Box 29, Te Anau, New Zealand. Current address: 64 Mokonui Street, Te Anau, New Zealand. E-mail: [email protected] Abstract In 1993 rabbits (Oryctolagus cuniculus cuniculus) were eradicated from Enderby (700ha) and Rose (80ha) islands in the New Zealand subantarctic Auckland Island group. This was achieved by a widespread poison campaign followed by an intensive second phase which included hunting with a dog, spotlighting and trapping. During the poison campaign a helicopter was used to apply a cereal pelleted bait incorporating the anticoagulant toxin brodifacoum to both islands. Mice (Mus musculus), which were present on Enderby, disappeared during the poison campaign and appear to have been eradicated during this phase. The potential impacts to non-target species were assessed prior to the operation. Although the poisoning had a notable short-term impact on skua (Stercorarius skua lonnburgi) numbers there has been no obvious long-term impact on any non-target species. Rabbits and mice were the last of several introduced mammal species to be removed from Enderby and Rose. Without them the unique ecological values of these islands have a chance to recover. Keywords Eradication; rabbits, Oryctolagus cuniculus cuniculus; mice, Mus musculus; Auckland Islands; Enderby Island. INTRODUCTION Plan for these islands, to eradicate all alien animals as soon as is feasible (Penniket et al. 1987). Goats were eradi- The Auckland Islands are an uninhabited subantarctic cated from Auckland Island between 1989 and 1991 (A. group lying 460 km south of New Zealand, at approxi- Cox pers.
    [Show full text]
  • Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 7-30-2008 Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St. Louis Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Sweeney, Patrick Wayne, "Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)" (2008). Dissertations. 539. https://irl.umsl.edu/dissertation/539 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. SYSTEMATICS AND FLORAL EVOLUTION IN THE PLANT GENUS GARCINIA (CLUSIACEAE) by PATRICK WAYNE SWEENEY M.S. Botany, University of Georgia, 1999 B.S. Biology, Georgia Southern University, 1994 A DISSERTATION Submitted to the Graduate School of the UNIVERSITY OF MISSOURI- ST. LOUIS In partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in BIOLOGY with an emphasis in Plant Systematics November, 2007 Advisory Committee Elizabeth A. Kellogg, Ph.D. Peter F. Stevens, Ph.D. P. Mick Richardson, Ph.D. Barbara A. Schaal, Ph.D. © Copyright 2007 by Patrick Wayne Sweeney All Rights Reserved Sweeney, Patrick, 2007, UMSL, p. 2 Dissertation Abstract The pantropical genus Garcinia (Clusiaceae), a group comprised of more than 250 species of dioecious trees and shrubs, is a common component of lowland tropical forests and is best known by the highly prized fruit of mangosteen (G. mangostana L.). The genus exhibits as extreme a diversity of floral form as is found anywhere in angiosperms and there are many unresolved taxonomic issues surrounding the genus.
    [Show full text]
  • Garcinia Cambogia Common Names : Citrin, Gambooge, Brindal Berry, Gorikapuli, Malabar Tamarind Synonyms : Gutta Gamba
    Dr. Supriya Dikshit Latin Name : Garcinia Cambogia Common Names : Citrin, Gambooge, Brindal Berry, Gorikapuli, Malabar Tamarind Synonyms : Gutta gamba. Gummigutta. Tom Rong. Gambodia. Garcinia Morella. Saskrit name : Vrikshamla, Kankusta Distribution : SE Asia, West and Central Africa, India Introduction : Garcinia gummi-gutta (syn. G. cambogia, G. quaesita), commonly known as Gambooge, Brindleberry, Brindall berry or Malabar tamarind, Goraka (Sri Lanka) is a subtropical species of Garcinia native to Indonesia. It is a small, sweet, exotic fruit native to South India and Southeast Asia. The yellowish fruit is pumpkin-shaped. Garcinia has garnered a lot of attention of late as a popular natural weight loss aid. The reason is that the rind of this pumpkin like fruit is rich in a substance called hydroxycitric acid / HCA, a principle extract of Garcinia cambogia. Garcinia is a source for a revolutionary natural diet ingredient which is currently a rage in America, Japan, Europe, and other western countries. Plant Description : Garcinia cambogia is a moderate-sized, evergreen tree and the flowers are unisexual, sessile and axillary. The leaves are dark green, shining, elliptic to obovate. It bears sweet-sour mixed fruits native to SE Asia and India. The fruit may resemble a small yellow or reddish pumpkin, or it may have a unique purple color. The fruit of Garcinia cambogia has been traditionally used in food preparation and cooking, having a distinctive taste. Garcinia has garnered a lot of attention of late as a popular natural weight loss aid. The reason is that the rind of this pumpkin like fruit is rich in a substance called hydroxycitric acid / HCA.
    [Show full text]
  • BRITISH BOTANICAL GARDENS in the 1980S
    BRITISH BOTANICAL GARDENS IN THE 1980s: CHANGES REFLECTED BY BIBLIOGRAPHICAL AND SOCIAL SURVEY Enid Constance Gilberthorpe Thesis submitted fox' the degree of PhD University of Sheffield Division of Education January 1987 cONTEN'rs PAGE NUMBER List of Contents :1. List of Illustrations 111 Acknowledgements iv Summary vi CHAPTER I INTRODUCTION: AIMS AND SCOPE I 2 KEY DOCUMENTS 27 3 PLANTS FOR TEACHING, AND FOR RESEARCH: 42 teaching of botany; supplies of plant material; research into taxonomy; experimental botany 4 ECONOMIC BOTANY - plants with domestic 57 and medicinal uses and of commercial importance 5 HORTICULTURE: the acquisition and 74 cultivation of plants in botanical gardens 6 AMENITY: plants for pleasure and 97 interest 7 PUBLIC INFORMATION AND EDUCATION ilk SERVICES; PUBLIC RECREATION FACILITIES 1. CHAPTER PAGE NUMBER 8 CONSERVATION: wild and cultivated 139 plants in danger 9 BOTANICAL GARDENS OPEN TO THE PUBLIC; 188 GUIDES TO THE GARDENS - PRINTED PUBLICITY; ILLUSTRATIONS FROM THE GUIDE S 10 FUNCTIONS OF GARDENS - THE PROBLEM 220 OF OVERLAP 11 SHEFFIELD BOTANICAL GARDENS 242 12 BOTANICAL GARDENS IN BRITISH 'TWINNED' 2.7 TOWNS - ANY INTERACTION WITH THEIR EUROPEAN PARTNERS? 13 PUBLIC VIEWS ON BOTANICAL GARDENS - 287 A SAMPLE SURVEY 14 GARDENS NOW AND IN THE FUTURE - 294 POSSIBLE DEVELOPMENTS BIBLIOGRAPHY 328 ILLUSTRATIONS (between pages 219 and 220) National 1. Edinburgh Royal Botanic Garden: Rock Garden Pond. 2. Kew Royal Botanic Gardens: Palm House with spring bedding. 3. Westonbirt Arboretum (Forestry Commission): the memorial sarsen stone on Mitchell Drive. University L&. Cambridge University Botanic Garden: [view of Garden shown on front of folding leaflet]. 5. Ness Gardens (University of Liverpool): a late summer scene in the Heather Garden.
    [Show full text]
  • REVIEW ARTICLE Fire, Grazing and the Evolution of New Zealand Grasses
    AvailableMcGlone on-lineet al.: Evolution at: http://www.newzealandecology.org/nzje/ of New Zealand grasses 1 REVIEW ARTICLE Fire, grazing and the evolution of New Zealand grasses Matt S. McGlone1*, George L. W. Perry2,3, Gary J. Houliston1 and Henry E. Connor4 1Landcare Research, PO Box 69040, Lincoln 7640, New Zealand 2School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand 3School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand 4Department of Geography, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand *Author for correspondence (Email: [email protected]) Published online: 7 November 2013 Abstract: Less than 4% of the non-bamboo grasses worldwide abscise old leaves, whereas some 18% of New Zealand native grasses do so. Retention of dead or senescing leaves within grass canopies reduces biomass production and encourages fire but also protects against mammalian herbivory. Recently it has been argued that elevated rates of leaf abscission in New Zealand’s native grasses are an evolutionary response to the absence of indigenous herbivorous mammals. That is, grass lineages migrating to New Zealand may have increased biomass production through leaf-shedding without suffering the penalty of increased herbivory. We show here for the Danthonioideae grasses, to which the majority (c. 74%) of New Zealand leaf-abscising species belong, that leaf abscission outside of New Zealand is almost exclusively a feature of taxa of montane and alpine environments. We suggest that the reduced frequency of fire in wet, upland areas is the key factor as montane/alpine regions also experience heavy mammalian grazing.
    [Show full text]