Encoding Parameters Prediction for Convex Hull Video Encoding Ping-Hao Wu∗, Volodymyr Kondratenko y, Gaurang Chaudhari z, and Ioannis Katsavounidis z Facebook Inc., 1 Hacker Way, Menlo Park, CA 94025 Email:
[email protected]∗,
[email protected],
[email protected],
[email protected] Abstract—Fast encoding parameter selection technique have BD-rate loss. It uses a faster encoder or the same encoder been proposed in the past. Leveraging the power of convex hull with faster speed settings to perform analysis on the video video encoding framework, an encoder with a faster speed setting, sequence first, to determine the optimal encoding parameters or faster encoder such as hardware encoder, can be used to determine the optimal encoding parameters. It has been shown to be used with a slower encoder with better compression that one can speed up 3 to 5 times, while still achieve 20-40% efficiency. Although this fast selection technique can achieve BD-rate savings, compared to the traditional fixed-QP encodings. similar savings with a fraction of the computations, limitations Such approach presents two problems. First, although the are still present. First of all, the few percent loss in BD-rate is speedup is impressive, there is still ∼3% loss in BD-rate. not negligible in the case of higher-quality contents, where a Secondly, the previous approach only works with encoders implementing standards that have the same quantization scheme much higher target quality and/or target bitrate is often used. and QP range, such as between VP9 and AV1, and not in the Secondly, the quantization scheme of the fast encoder, used scenario where one might want to use a much faster H.264 for analysis, and that of the slow encoder, used for producing encoder, to determine and predict the encoding parameters for the actual deliverable encodings, need to be the same in order VP9 or AV1 encoder.