GROOT: a Real-Time Streaming System of High-Fidelity Volumetric Videos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ROOT I/O Compression Improvements for HEP Analysis
EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017 CHEP 2019 ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, enhancing it by improving its performance and interaction with other data analysis ecosys- tems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased over the last couple of years. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly, because there are significant trade-offs between the increased CPU cost for reading and writing files and the reduces storage space. 1 Introduction In the past years, Large Hadron Collider (LHC) experiments are managing about an exabyte of storage for analysis purposes, approximately half of which is stored on tape storages for archival purposes, and half is used for traditional disk storage. Meanwhile for High Lumi- nosity Large Hadron Collider (HL-LHC) storage requirements per year are expected to be increased by a factor of 10 [1]. -
Chapter 7 Immersive Journalism: the New Narrative Doron Friedman and Candice Kotzen
“9.61x6.69” b3187 Robot Journalism: Can Human Journalism Survive? FA Chapter 7 Immersive journalism: The new narrative Doron Friedman and Candice Kotzen Immersive journalism is a subcategory of journalism that uses virtual reality (VR) and similar technologies to provide those engaging in such technologies with a sense of being wholly engrossed in the news story, thus allowing the news audience to form a direct impression of the ambience of the story. This chapter is intended to serve as a primer of VR use for news storytelling for individuals with an interest or background in journalism. The first section presents some essential background on VR and related technologies. Next, we present some research findings on the impact of VR, and review some of the early work in immersive journalism. We conclude by delineating a collection of thoughts and questions for journalists wishing to enter into this new exciting field. 1. The Technology More than 50 years after the first demonstration of virtual reality (VR) technologies [Sutherland, 1965], it is apparent that VR is on the brink of becoming a form of mass media as VR documentary and journalism has been a central theme. Triggered by Facebook’s acquisition of Oculus Rift in 2014, the technology industry launched the race to deliver compelling VR hardware, software, and content. In this chapter, we present the essential background for non-experts who are intrigued by immer- sive journalism. For a recent comprehensive review of VR research in general, we recommend Slater and Sanchez-Vives [2016]. Relevant issues from this review are elaborated below. -
Arxiv:2004.10531V1 [Cs.OH] 8 Apr 2020
ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, increasing per- formance and enhancing it and improving its interaction with other data analy- sis ecosystems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly to improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased during the LHC era. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly: there are sig- nificant trade-offs between the increased CPU cost for reading and writing files and the reduce storage space. 1 Introduction In the past years LHC experiments are commissioned and now manages about an exabyte of storage for analysis purposes, approximately half of which is used for archival purposes, and half is used for traditional disk storage. Meanwhile for HL-LHC storage requirements per year are expected to be increased by factor 10 [1]. arXiv:2004.10531v1 [cs.OH] 8 Apr 2020 Looking at these predictions, we would like to state that storage will remain one of the major cost drivers and at the same time the bottlenecks for HEP computing. -
Advanced Volumetric Capture and Processing
ADVANCED VOLUMETRIC CAPTURE AND PROCESSING O. Schreer, I. Feldmann, T. Ebner, S. Renault, C. Weissig, D. Tatzelt, P. Kauff Fraunhofer Heinrich Hertz Institute, Berlin, Germany ABSTRACT Volumetric video is regarded worldwide as the next important development step in media production. Especially in the context of rapidly evolving Virtual and Augmented Reality markets, volumetric video is becoming a key technology. Fraunhofer HHI has developed a novel technology for volumetric video: 3D Human Body Reconstruction (3DHBR). The 3D Human Body Reconstruction technology captures real persons with our novel volumetric capture system and creates naturally moving dynamic 3D models, which can then be observed from arbitrary viewpoints in a virtual or augmented reality scene. The capture system consists of an integrated multi-camera and lighting system for full 360 degree acquisition. A cylindrical studio has been developed with a diameter of 6m and it consists of 32 20MPixel cameras and 120 LED panels that allow for arbitrary lit background. Hence, diffuse lighting and automatic keying is supported. The avoidance of green screen and provision of diffuse lighting offers best possible conditions for re-lighting of the dynamic 3D models afterwards at design stage of the VR experience. In contrast to classical character animation, facial expressions and moving clothes are reconstructed at high geometrical detail and texture quality. The complete workflow is fully automatic, requires about 12 hours per minute of mesh sequence and provides a high level of quality for immediate integration in virtual scenes. Meanwhile a second, professional studio has been built up on the film campus of Potsdam Babelsberg. This studio is operated by VoluCap GmbH, a joint venture between Studio Babelsberg, ARRI, UFA, Interlake and Fraunhofer HHI. -
Unfoldr Dstep
Asymmetric Numeral Systems Jeremy Gibbons WG2.11#19 Salem ANS 2 1. Coding Huffman coding (HC) • efficient; optimally effective for bit-sequence-per-symbol arithmetic coding (AC) • Shannon-optimal (fractional entropy); but computationally expensive asymmetric numeral systems (ANS) • efficiency of Huffman, effectiveness of arithmetic coding applications of streaming (another story) • ANS introduced by Jarek Duda (2006–2013). Now: Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox (DivANS). ANS 3 2. Intervals Pairs of rationals type Interval (Rational, Rational) = with operations unit (0, 1) = weight (l, r) x l (r l) x = + − ⇥ narrow i (p, q) (weight i p, weight i q) = scale (l, r) x (x l)/(r l) = − − widen i (p, q) (scale i p, scale i q) = so that narrow and unit form a monoid, and inverse relationships: weight i x i x unit 2 () 2 weight i x y scale i y x = () = narrow i j k widen i k j = () = ANS 4 3. Models Given counts :: [(Symbol, Integer)] get encodeSym :: Symbol Interval ! decodeSym :: Rational Symbol ! such that decodeSym x s x encodeSym s = () 2 1 1 1 1 Eg alphabet ‘a’, ‘b’, ‘c’ with counts 2, 3, 5 encoded as (0, /5), ( /5, /2), and ( /2, 1). { } ANS 5 4. Arithmetic coding encode1 :: [Symbol ] Rational ! encode1 pick foldl estep unit where = ◦ 1 estep :: Interval Symbol Interval 1 ! ! estep is narrow i (encodeSym s) 1 = decode1 :: Rational [Symbol ] ! decode1 unfoldr dstep where = 1 dstep :: Rational Maybe (Symbol, Rational) 1 ! dstep x let s decodeSym x in Just (s, scale (encodeSym s) x) 1 = = where pick :: Interval Rational satisfies pick i i. -
Bosch Intelligent Streaming
Intelligent streaming | Bitrate-optimized high-quality video 1 | 22 Intelligent streaming Bitrate-optimized high-quality video – White Paper Data subject to change without notice | May 31st, 2019 BT-SC Intelligent streaming | Bitrate-optimized high-quality video 2 | 22 Table of contents 1 Introduction 3 2 Basic structures and processes 4 2.1 Image capture process ..................................................................................................................................... 4 2.2 Image content .................................................................................................................................................... 4 2.3 Scene content .................................................................................................................................................... 5 2.4 Human vision ..................................................................................................................................................... 5 2.5 Video compression ........................................................................................................................................... 6 3 Main concepts and components 7 3.1 Image processing .............................................................................................................................................. 7 3.2 VCA ..................................................................................................................................................................... 7 3.3 Smart Encoder -
Compresso: Efficient Compression of Segmentation Data for Connectomics
Compresso: Efficient Compression of Segmentation Data For Connectomics Brian Matejek, Daniel Haehn, Fritz Lekschas, Michael Mitzenmacher, Hanspeter Pfister Harvard University, Cambridge, MA 02138, USA bmatejek,haehn,lekschas,michaelm,[email protected] Abstract. Recent advances in segmentation methods for connectomics and biomedical imaging produce very large datasets with labels that assign object classes to image pixels. The resulting label volumes are bigger than the raw image data and need compression for efficient stor- age and transfer. General-purpose compression methods are less effective because the label data consists of large low-frequency regions with struc- tured boundaries unlike natural image data. We present Compresso, a new compression scheme for label data that outperforms existing ap- proaches by using a sliding window to exploit redundancy across border regions in 2D and 3D. We compare our method to existing compression schemes and provide a detailed evaluation on eleven biomedical and im- age segmentation datasets. Our method provides a factor of 600-2200x compression for label volumes, with running times suitable for practice. Keywords: compression, encoding, segmentation, connectomics 1 Introduction Connectomics|reconstructing the wiring diagram of a mammalian brain at nanometer resolution|results in datasets at the scale of petabytes [21,8]. Ma- chine learning methods find cell membranes and create cell body labelings for every neuron [18,12,14] (Fig. 1). These segmentations are stored as label volumes that are typically encoded in 32 bits or 64 bits per voxel to support labeling of millions of different nerve cells (neurons). Storing such data is expensive and transferring the data is slow. To cut costs and delays, we need compression methods to reduce data sizes. -
State-Of-The-Art in Holography and Auto-Stereoscopic Displays
State-of-the-art in holography and auto-stereoscopic displays Daniel Jönsson <Ersätt med egen bild> 2019-05-13 Contents Introduction .................................................................................................................................................. 3 Auto-stereoscopic displays ........................................................................................................................... 5 Two-View Autostereoscopic Displays ....................................................................................................... 5 Multi-view Autostereoscopic Displays ...................................................................................................... 7 Light Field Displays .................................................................................................................................. 10 Market ......................................................................................................................................................... 14 Display panels ......................................................................................................................................... 14 AR ............................................................................................................................................................ 14 Application Fields ........................................................................................................................................ 15 Companies ................................................................................................................................................. -
Isize Bitsave:High-Quality Video Streaming at Lower Bitrates
Datasheet v20210518 iSIZE BitSave: High-Quality Video Streaming at Lower Bitrates iSIZE’s innovative BitSave technology comprises an AI-based perceptual preprocessing solution that allows conventional, third-party encoders to produce higher quality video at lower bitrate. BitSave achieves this by preprocessing the video content before it reaches the video encoder (Fig. 1), such that the output after compressing with any standard video codec is perceptually optimized with less motion artifacts or blurring, for the same or lower bitrate. BitSave neural networks are able to isolate areas of perceptual importance, such as those with high motion or detailed texture, and optimize their structure so that they are preserved better at lower bitrate by any subsequent encoder. As shown in our recent paper, when integrated as a preprocessor prior to a video encoder, BitSave is able to reduce bitrate requirements for a given quality level by up to 20% versus that encoder. When coupled with open-source AVC, HEVC and AV1 encoders, BitSave allows for up to 40% bitrate reduction at no quality compromise in comparison to leading third-party AVC, HEVC and AV1 encoding services. Lower bitrates equate to smaller filesizes, lower storage, transmission and distribution costs, reduced energy consumption and more satisfied customers. Source BitSave Encoder Delivery AI-based pre- Single pass processing processing prior One frame latency per content for an to encoding (AVC, entire ABR ladder HEVC, VP9, AV1) Improves encoding quality Integrated within Intel as measured by standard OpenVINO, ONNX and Dolby perceptual quality metrics Vision, easy to plug&play (VMAF, SSIM, VIF) within any existing workflow Figure 1. -
Towards Optimal Compression of Meteorological Data: a Case Study of Using Interval-Motivated Overestimators in Global Optimization
Towards Optimal Compression of Meteorological Data: A Case Study of Using Interval-Motivated Overestimators in Global Optimization Olga Kosheleva Department of Electrical and Computer Engineering and Department of Teacher Education, University of Texas, El Paso, TX 79968, USA, [email protected] 1 Introduction The existing image and data compression techniques try to minimize the mean square deviation between the original data f(x; y; z) and the compressed- decompressed data fe(x; y; z). In many practical situations, reconstruction that only guaranteed mean square error over the data set is unacceptable. For example, if we use the meteorological data to plan a best trajectory for a plane, then what we really want to know are the meteorological parameters such as wind, temperature, and pressure along the trajectory. If along this line, the values are not reconstructed accurately enough, the plane may crash; the fact that on average, we get a good reconstruction, does not help. In general, what we need is a compression that guarantees that for each (x; y), the di®erence jf(x; y; z)¡fe(x; y; z)j is bounded by a given value ¢, i.e., that the actual value f(x; y; z) belongs to the interval [fe(x; y; z) ¡ ¢; fe(x; y; z) + ¢]: In this chapter, we describe new e±cient techniques for data compression under such interval uncertainty. 2 Optimal Data Compression: A Problem 2.1 Data Compression Is Important At present, so much data is coming from measuring instruments that it is necessary to compress this data before storing and processing. -
Forcepoint DLP Supported File Formats and Size Limits
Forcepoint DLP Supported File Formats and Size Limits Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 This article provides a list of the file formats that can be analyzed by Forcepoint DLP, file formats from which content and meta data can be extracted, and the file size limits for network, endpoint, and discovery functions. See: ● Supported File Formats ● File Size Limits © 2021 Forcepoint LLC Supported File Formats Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 The following tables lists the file formats supported by Forcepoint DLP. File formats are in alphabetical order by format group. ● Archive For mats, page 3 ● Backup Formats, page 7 ● Business Intelligence (BI) and Analysis Formats, page 8 ● Computer-Aided Design Formats, page 9 ● Cryptography Formats, page 12 ● Database Formats, page 14 ● Desktop publishing formats, page 16 ● eBook/Audio book formats, page 17 ● Executable formats, page 18 ● Font formats, page 20 ● Graphics formats - general, page 21 ● Graphics formats - vector graphics, page 26 ● Library formats, page 29 ● Log formats, page 30 ● Mail formats, page 31 ● Multimedia formats, page 32 ● Object formats, page 37 ● Presentation formats, page 38 ● Project management formats, page 40 ● Spreadsheet formats, page 41 ● Text and markup formats, page 43 ● Word processing formats, page 45 ● Miscellaneous formats, page 53 Supported file formats are added and updated frequently. Key to support tables Symbol Description Y The format is supported N The format is not supported P Partial metadata -
2014 Annual Report
Sandia National Laboratories 2014 LDRD Annual Report Laboratory Directed Research and Development 2014 ANNUAL REPORT Exceptional service in the national interest 1 Cover photos (clockwise): Randall Schunk and Rekha Rao discuss an image generated by Goma 6.0, an R&D 100 Laboratory Directed Research and Development Award winner that has origins in several LDRD projects. 2014 ANNUAL REPORT A modeled simulation of heat flux in a grandular material, showing what appear to be several preferential “channels” for heat flow developed in Project 171054. Melissa Finley examines a portable diagnostic device, for Bacillus anthracis detection in ultra-low resource environments, developed in Project 158813, which won an R&D 100 award. The Gauss–Newton with Approximated Tensors (GNAT) Reduced Order Models technique applied to a large-scale computational fluid dynamics problem was developed in Project 158789. Edward Jimenez, Principal Investigator for a “High Performance Graphics Processor- Based Computed Tomography Reconstruction Algorithms for Nuclear and Other Large Exceptional service in the national interest Scale Applications” for Project 158182. 1 Issued by Sandia National Laboratories, operated for the United States Abstract Department of Energy by Sandia Corporation. This report summarizes progress from the NOTICE: This report was prepared as an account of work sponsored by an agency of Laboratory Directed Research and Development the United States Government. Neither the United States Government, nor any agency (LDRD) program during fiscal year 2014. In thereof, nor any of their employees, nor any of their contractors, subcontractors, or addition to the programmatic and financial their employees, make any warranty, express or implied, or assume any legal liability overview, the report includes progress reports or responsibility for the accuracy, completeness, or usefulness of any information, from 419 individual R&D projects in 16 apparatus, product, or process disclosed, or represent that its use would not infringe categories.