Astronomy & Astrophysics manuscript no. 22698cir © ESO 2018 Friday 12th October, 2018 The dusty torus in the Circinus galaxy: a dense disk and the torus funnel⋆ Konrad R. W. Tristram1, Leonard Burtscher2, Walter Jaffe3, Klaus Meisenheimer4, Sebastian F. Hönig5, Makoto Kishimoto1, Marc Schartmann6,2, Gerd Weigelt1 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email:
[email protected] 2 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstraße, 85741 Garching, Germany 3 Leiden Observatory, Leiden University, Niels-Bohr-Weg 2, 2300 CA Leiden, The Netherlands 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 5 Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 6 Universitätssternwarte München, Scheinerstr. 1, 81679 München, Germany Received 18 September 2013 / Accepted 26 November 2013 Abstract Context. With infrared interferometry it is possible to resolve the nuclear dust distributions that are commonly associated with the dusty torus in active galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus and previous interferometric observations have shown that its nuclear dust emission is particularly well resolved. Aims. The aim of the present interferometric investigation is to better constrain the dust morphology in this active nucleus. Methods. To this end, extensive new observations were carried out with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer, leading to a total of 152 correlated flux spectra and differential phases between 8 and 13 µm. To interpret this data, we used a model consisting of black-body emitters with a Gaussian brightness distribution and with dust extinction.