Signals & Systems Interaction in the Time Domain

Total Page:16

File Type:pdf, Size:1020Kb

Signals & Systems Interaction in the Time Domain Signals & Systems interaction in the Time Domain (Systems will be LTI from now on unless otherwise stated) Course Objectives Specific Course Topics: -Basic test signals and their properties -Basic system examples and their properties -Signals and systems interaction (Time Domain: Impulse Response and convolution, Frequency Domain: Frequency Response) -Applications that exploit signal & systems interaction: system id, audio effects, filtering, AM / FM radio -Signal sampling and reconstruction (time permitting) Signals & Systems interaction in the TD Goals I. Impulse Response (IR) and Convolution Formula -Definition of IR and its use for system identification -Convolution formula and its graphical interpretation II. Properties of systems from IR and convolution -Impulse response as a measure of system memory/stability -Alternative measures of memory/stability: step response III. Applications of convolution -Audio effects: reverberation -Noise removal (i.e. signal filtering or smoothing) The Impulse response When no model is available to describe a system, then we can try to use measured data in order to build one (this process is called “system identification.”) The Impulse Response When no model is available to describe a system, then we can try to use measured data in order to build one (this process is called “system identification.”) The measured data comes from input/output experiments. δ(t) h(t) x(t) h(t) y(t) € € € € € Measuring the Impulse Response (IR) of a system is one of such experiments. By definition, the IR h ( t ) of a system is its response to the unit impulse signal. € The Impulse Response When no model is available to describe a system, then we can try to use measured data in order to build one (this process is called “system identification.”) The measured data comes from input/output experiments. δ(t) h(t) x(t) h(t) y(t) € € € € € Measuring the Impulse Response (IR) of a system is one of such experiments. By definition, the IR h ( t ) of a system is its response to the unit impulse signal. In fact, when the system is LTI, the IR is all we need to know to obtain the response of€ the system to any input. The Convolution Formula Suppose we have measured the IR h ( t ) of an LTI system. Then, given an input x ( t ) we can compute the system output from zero initial conditions as € +∞ +∞ € y(t ) = ∫ h (τ ) x ( t − τ ) d τ or y(t) = ∫ h(t − τ)x(τ)dτ −∞ −∞ (Note: this is due to the sampling property of δ ( t ) and the LTI properties of the system, check out book, page 171, for more info) € € € The Convolution Formula Suppose we have measured the IR h ( t ) of an LTI system. Then, given an input x ( t ) we can compute the system output from zero initial conditions (IC) as +∞ +∞ y(t) = h(τ)x(t − τ)€dτ y(t) = h(t − τ)x(τ)dτ ∫ or ∫ € −∞ −∞ Since IC are zero, this is a pure “forced response” of the LTI system When€ the LTI system is not initially€ at rest, then the complete system response is given by the sum of a “free-body response” (*) plus the above “forced response”: +∞ y(t) = y free−body−response (t) + ∫ h(τ)x(t − τ)dτ −∞ (*) a free body response is a particular solution to the system for zero inputs € The Convolution Formula Suppose we have measured the IR h ( t ) of an LTI system. Then, given an input x ( t ) we can compute the system output from zero initial conditions (IC) as +∞ +∞ y(t) = ∫ h ( τ ) x ( t − τ ) € d τ or y(t) = ∫ h(t − τ)x(τ)dτ € −∞ −∞ Since IC are zero, this is a pure “forced response” of the LTI system. € € When the LTI system is not initially at rest, the complete system response is given by the sum of a “free-body response” plus the above “forced response”: +∞ y(t) = y free−body−response (t) + ∫ h(τ)x(t − τ)dτ −∞ For simplicity, we will assume (unless we say otherwise) that our system is always at rest when we apply an input (y free−body−response (t) = 0) € € The Convolution Formula +∞ +∞ Two equivalent formulas: y ( t ) = ∫ h ( τ ) x ( t − τ )d τ or y(t) = ∫ h(t − τ)x(τ)dτ −∞ −∞ Observe that: € - t is treated as€ a constant in the integration - τ is the integration variable - The limits of integration + ∞ , −∞ may be simplified to finite values depending on the signals h(t) x(t) € - Both integrals give the same values, so they are equivalent € € h(t) ramp(t) x(t) 7u(t) Example: suppose = = then: +∞ € € +∞ y(t) = ∫ h(τ)x(t − τ)dτ = ∫ ramp(τ)7u(t − τ)dτ −∞ −∞ +∞ t € = ∫ τ 7u(t − τ€) dτ = ( ∫ τ 7dτ)u(t) 0 0 t 2 t 2 2 € τ t 7t = 7( ∫ τdτ)u(t) = 7 u(t) = 7 − 0 u(t) = u(t) 0 2 0 2 2 € € Graphical Interpretation of Convolution Notation: From now on, we will use a * to denote the convolution-formula operation. That is: +∞ y(t) = x(t)* h(t) = ∫ h(τ)x(t − τ)dτ −∞ The Impulse Response tells us through the convolution formula how different€ the output will be from the input. Graphical Interpretation of Convolution Notation: From now on, we will use a * to denote the convolution-formula operation. That is: +∞ y(t) = x(t)* h(t) = ∫ h(τ)x(t − τ)dτ −∞ The Impulse Response tells us through the convolution formula how different the output will be from the input. € You can look at the integral as h ( t ) being a weighting function and convolution as being a weighted average of the input over the integration interval. € Graphical Interpretation of Convolution Notation: From now on, we will use a * to denote the convolution-formula operation. That is: +∞ y(t) = x(t)* h(t) = ∫ h(τ)x(t − τ)dτ −∞ The Impulse Response tells us through the convolution formula how different the output will be from the input. € You can look at the integral as h ( t ) being a weighting function and convolution as being a weighted average of the input over the integration interval. The output value y ( t ) is€ then a compromise of the memories of the input x ( t ) from the past. In other words, the values h(τ) tell how well the system remembers x ( t − τ ). € Therefore, the IR is a measure of the memory of the system. € € € Graphical Interpretation of Convolution Consider a RC low-pass filter Assume the capacitor is initially discharged (zero energy). Suppose we apply a pulse waveform at the voltage source. This leads to charging and discharging of the capacitor. −1 1 t The impulse response of the RC low-pass filter is: h ( t ) = e RC u ( t ) RC The time constant of the exponential is RC (a small value) for example, a typical value is RC = 2.5 ×10−3 s (RC)−1 = 400 € € € Graphical Interpretation of Convolution Let us compare the signals h ( τ ) and x ( t − τ ,) and the output value y ( t ). The impulse response and input signals are: € € h( ) € τ x(τ) € € Graphical Interpretation of Convolution The output signal y ( t) becomes: h(τ€) x(τ) y(t) € € € Graphical Interpretation of Convolution What is x ( t − τ ) for different values of t ? € € x(τ) x(−τ) t = 0 € € € Graphical Interpretation of Convolution What is x ( t − τ ) for different values of t ? € € x(τ) x(0.01− τ) t = 0.01 € € € Graphical Interpretation of Convolution As time t increases from t = 0 to t = 0.01 , x ( t − τ ) and h (τ ) start to overlap. The more overlap, the higher the value of the convolution integral and the more charge in the capacitor. At t = 0.01 the voltage in the capacitor is at its maximum € value. € € € € € x(0.005 − τ),h(τ) y(0.005) ≈ 3.5 € € Graphical Interpretation of Convolution As time t increases from t = 0 to t = 0.01 , x ( t − τ ) and h (τ ) start to overlap. The more overlap, the higher the value of the convolution integral and the more charge in the capacitor. At t = 0.01 the voltage in the capacitor is at its maximum € value. € € € € € x(0.01− τ),h(τ) y(0.01) ≈ 4 € € Graphical Interpretation of Convolution As time t increases from t = 0.01 to t = 0.02 , less of the non-zero part of x ( t − τ ) overlaps with the non-zero part of h ( τ ) , and the capacitor starts discharging. At t = 0.02 the voltage of the €capacitor reaches€ the minimum€ value. € € € x(0.015 − τ),h(τ) y(0.01) ≈ 0.5 € € Graphical Interpretation of Convolution As time t increases from t = 0.01 to t = 0.02 , less of the non-zero part of x ( t − τ ) overlaps with the non-zero part of h ( τ ) , and the capacitor starts discharging. At t = 0.02 the voltage of the €capacitor reaches€ the minimum€ value. € € € x(0.02 − τ),h(τ) y(0.02) ≈ 0 € € Graphical Interpretation of Convolution h(τ) € x(τ) y(t) h ( τ ) tells us how different y ( t ) will be from x(τ) In this case the output of the system is € a “rounded” version of the€ input € € € Signals & Systems Interaction in the TD Goals I. Impulse Response (IR) and Convolution Formula -Definition of IR and its use for system identification -Convolution formula and its graphical interpretation II. Properties of systems from IR and convolution -Impulse response as a measure of system memory/stability -Alternative measures of memory/stability: step response III. Applications of convolution -Audio effects: reverberation -Noise removal (i.e. signal filtering or smoothing) Impulse Response and System Memory The memory of an LTI system will clearly define the shape of the IR (how fast it decays to zero or not.) However, from the previous discussion on convolution, we also observe that the the shape of h ( t ) is what determines how much the system recalls previous input values: The larger the range of non-negative€ values of the h ( t ) for positive t , the “more memory” the system has € €The memory of the RC low-pass filter is small and related to the IR settling time Impulse Response and System Memory Definition: The settling time of a signal is the time it takes the signal to reach its steady-state value.
Recommended publications
  • Control Systems
    ECE 380: Control Systems Course Notes: Winter 2014 Prof. Shreyas Sundaram Department of Electrical and Computer Engineering University of Waterloo ii c Shreyas Sundaram Acknowledgments Parts of these course notes are loosely based on lecture notes by Professors Daniel Liberzon, Sean Meyn, and Mark Spong (University of Illinois), on notes by Professors Daniel Davison and Daniel Miller (University of Waterloo), and on parts of the textbook Feedback Control of Dynamic Systems (5th edition) by Franklin, Powell and Emami-Naeini. I claim credit for all typos and mistakes in the notes. The LATEX template for The Not So Short Introduction to LATEX 2" by T. Oetiker et al. was used to typeset portions of these notes. Shreyas Sundaram University of Waterloo c Shreyas Sundaram iv c Shreyas Sundaram Contents 1 Introduction 1 1.1 Dynamical Systems . .1 1.2 What is Control Theory? . .2 1.3 Outline of the Course . .4 2 Review of Complex Numbers 5 3 Review of Laplace Transforms 9 3.1 The Laplace Transform . .9 3.2 The Inverse Laplace Transform . 13 3.2.1 Partial Fraction Expansion . 13 3.3 The Final Value Theorem . 15 4 Linear Time-Invariant Systems 17 4.1 Linearity, Time-Invariance and Causality . 17 4.2 Transfer Functions . 18 4.2.1 Obtaining the transfer function of a differential equation model . 20 4.3 Frequency Response . 21 5 Bode Plots 25 5.1 Rules for Drawing Bode Plots . 26 5.1.1 Bode Plot for Ko ....................... 27 5.1.2 Bode Plot for sq ....................... 28 s −1 s 5.1.3 Bode Plot for ( p + 1) and ( z + 1) .
    [Show full text]
  • Example Problems and Solutions
    EXAMPLE PROBLEMS AND SOLUTIONS A-5-1. In the system of Figure 5-52, x(t) is the input displacement and B(t) is the output angular displacement. Assume that the masses involved are negligibly small and that all motions are restricted to be small; therefore, the system can be considered linear. The initial conditions for x and 0 are zeros, or x(0-) = 0 and H(0-) = 0. Show that this system is a differentiating element. Then obtain the response B(t) when x(t)is a unit-step input. Solution. The equation for the system is b(X - L8) = kLB or The Laplace transform of this last equation, using zero initial conditions, gives And so Thus the system is a differentiating system. For the unit-step input X(s) = l/s,the output O(s)becomes The inverse Laplace transform of O(s)gives Figure 5-52 Mechanical system. Chapter 5 / Transient and Steady-State Response Analyses Figure 5-53 Unit-step input and the response of the mechanical s) stem shown in Figure 5-52. Note that if the value of klb is large the response O(t) approaches a pulse signal as shown in Figure 5-53. A-5-2. Consider the mechanical system shown in Figure 5-54. Suppose that the system is at rest initially [x(o) = 0, i(0) = 01, and at t = 0 it is set into motion by a unit-impulse force. Obtain a mathe- matical model for the system.Then find the motion of the system. Solution. The system is excited by a unit-impulse input.
    [Show full text]
  • Control System Design Methods
    Christiansen-Sec.19.qxd 06:08:2004 6:43 PM Page 19.1 The Electronics Engineers' Handbook, 5th Edition McGraw-Hill, Section 19, pp. 19.1-19.30, 2005. SECTION 19 CONTROL SYSTEMS Control is used to modify the behavior of a system so it behaves in a specific desirable way over time. For example, we may want the speed of a car on the highway to remain as close as possible to 60 miles per hour in spite of possible hills or adverse wind; or we may want an aircraft to follow a desired altitude, heading, and velocity profile independent of wind gusts; or we may want the temperature and pressure in a reactor vessel in a chemical process plant to be maintained at desired levels. All these are being accomplished today by control methods and the above are examples of what automatic control systems are designed to do, without human intervention. Control is used whenever quantities such as speed, altitude, temperature, or voltage must be made to behave in some desirable way over time. This section provides an introduction to control system design methods. P.A., Z.G. In This Section: CHAPTER 19.1 CONTROL SYSTEM DESIGN 19.3 INTRODUCTION 19.3 Proportional-Integral-Derivative Control 19.3 The Role of Control Theory 19.4 MATHEMATICAL DESCRIPTIONS 19.4 Linear Differential Equations 19.4 State Variable Descriptions 19.5 Transfer Functions 19.7 Frequency Response 19.9 ANALYSIS OF DYNAMICAL BEHAVIOR 19.10 System Response, Modes and Stability 19.10 Response of First and Second Order Systems 19.11 Transient Response Performance Specifications for a Second Order
    [Show full text]
  • Non-Integer Order Approximation of a PID-Type Controller for Boost Converters
    energies Article Non-Integer Order Approximation of a PID-Type Controller for Boost Converters Allan G. S. Sánchez 1,* , Francisco J. Pérez-Pinal 2 , Martín A. Rodríguez-Licea 1 and Cornelio Posadas-Castillo 3 1 CONACYT-Instituto Tecnológico de Celaya, Guanajuato 38010, Mexico; [email protected] 2 Instituto Tecnológico de Celaya, Guanajuato 38010, Mexico; [email protected] 3 Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; [email protected] * Correspondence: [email protected] Abstract: In this work, the voltage regulation of a boost converter is addressed. A non-integer order PID controller is proposed to deal with the closed-loop instability of the system. The average linear model of the converter is obtained through small-signal approximation. The resulting average linear model is considered divided into minimum and normalized non-minimum phase parts. This approach allows us to design a controller for the minimum phase part of the system, excluding tem- porarily the non-minimum phase one. A fractional-order PID controller approximation is suggested for the minimum phase part of the system. The proposal for the realization of the electrical controller is described and its implementation is used to corroborate its effectiveness when regulating the output voltage in the boost converter. The fractional-order PID approximation achieves regulation of the output voltage in the boost converter by exhibiting the iso-damping property and using a single Citation: Sánchez, A.G.S.; Pérez-Pinal, F.J.; Rodríguez-Licea, control loop, which confirmed its effectiveness in terms of controlling non-minimum phase/variable M.A.; Posadas-Castillo, C.
    [Show full text]
  • Review: Step Response of 1St Order Systems
    Review: step response of 1st order systems Step response in the s—domain c(t) 1 steady state Initial slope = = a (final value) a time constant ; s(s + a) 1.0 0.9 in the time domain 0.8 at 1 − e− u(t); 0.7 63% of final value ¡time constant¢ 0.6 at t = one time constant 0.5 1 τ = ; 0.4 a 0.3 rise time (10%→90%) 0.2 2.2 0.1 Tr = ; a 0 t 1 2 3 4 5 settling time (98%) a a a a a Tr 4 T = . Ts s a Figure 4.3 Figure by MIT OpenCourseWare. 2.004 Fall ’07 Lecture 07 – Wednesday, Sept. 19 Review: poles, zeros, and the forced/natural responses jω jω system pole – input pole – system zero – natural response forced response derivative & amplification σ σ −5 0 −5 −2 0 2.004 Fall ’07 Lecture 07 – Wednesday, Sept. 19 Goals for today • Second-order systems response – types of 2nd-order systems • overdamped • underdamped • undamped • critically damped – transient behavior of overdamped 2nd-order systems – transient behavior of underdamped 2nd-order systems – DC motor with non-negligible impedance • Next lecture (Friday): – examples of modeling & transient calculations for electro-mechanical 2nd order systems 2.004 Fall ’07 Lecture 07 – Wednesday, Sept. 19 DC motor system with non-negligible inductance Recall combined equations of motion LsI(s)+RI(s)+KvΩ(s)=Vs(s) ⇒ JsΩ(s)+bΩ(s)=KmI(s) ) LJ Lb KmKv Km s2 + + J s + b + Ω(s)= V (s) R R R R s ⎧ · µ ¶ µ ¶¸ ⎨⎪ (Js + b) Ω(s)=KmI(s) ⎩⎪ Including the DC motor’s inductance, we find Ω(s) Km 1 = Vs(s) LJ b R bR + KmKv ⎧ s2 + + s + Quadratic polynomial denominator ⎪ J L LJ Second—order system ⎪ µ ¶ µ ¶ ⎪ ⎪ ⎪ b ⎪ s + ⎨ I(s) 1 J = µ ¶ ⎪ Vs(s) R b R bR + K K ⎪ 2 m v ⎪ s + + s + ⎪ J L LJ ⎪ µ ¶ µ ¶ ⎪ ⎩⎪ 2.004 Fall ’07 Lecture 07 – Wednesday, Sept.
    [Show full text]
  • Block Diagrams, Feedback and Transient Response Specifications
    Block Diagrams, Feedback and Transient Response Specifications This module introduces the concepts of system block diagrams, feedback control and transient response specifications which are essential concepts for control design and analysis. (This command loads the functions required for computing Laplace and Inverse Laplace transforms. For more information on Laplace transforms, see the Laplace Transforms and Transfer Functions module.) Block Diagrams and Feedback Consider the example of a common household heating system. A household heating system usually consists of a thermostat that measures the room temperature and compares it with an input desired temperature. If the measured temperature is lower than the desired temperature, the thermostat sends a signal that opens the gas valve and starts the combustion in the furnace. The heat from the furnace is then transferred to the rooms of the house which causes the air temperature in the rooms to rise. Once the measured room temperature exceeds the desired temperature by a certain amount, the thermostat turns off the furnace and the cycle repeats. This is an example of a control system and in this case the variable being controlled is the room temperature. This system can be sub-divided into its major parts and represented by the following diagram which shows the directions of information flow. This type of diagram, known as a block diagram, is very useful in understanding how the different components interact and effect the variable of interest. Fig. 1: Block diagram of a household heating system The gas valve, furnace and house can be combined to get one block which can be called the plant of the system.
    [Show full text]
  • Performance Comparison of Ringing Artifact for the Resized Images Using Gaussian Filter and OR Filter
    ISSN: 2278 – 909X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 2, Issue 3, March 2013 Performance Comparison of Ringing Artifact for the Resized images Using Gaussian Filter and OR Filter Jinu Mathew, Shanty Chacko, Neethu Kuriakose developed for image sizing. Simple method for image resizing Abstract — This paper compares the performances of two approaches which are used to reduce the ringing artifact of the digital image. The first method uses an OR filter for the is the downsizing and upsizing of the image. Image identification of blocks with ringing artifact. There are two OR downsizing can be done by truncating zeros from the high filters which have been designed to reduce ripples and overshoot of image. An OR filter is applied to these blocks in frequency side and upsizing can be done by padding so that DCT domain to reduce the ringing artifact. Generating mask ringing artifact near the real edges of the image [1]-[3]. map using OD filter is used to detect overshoot region, and then In this paper, the OR filtering method reduces ringing apply the OR filter which has been designed to reduce artifact caused by image resizing operations. Comparison overshoot. Finally combine the overshoot and ripple reduced between Gaussian filter is also done. The proposed method is images to obtain the ringing artifact reduced image. In second computationally faster and it produces visually finer images method, the weighted averaging of all the pixels within a without blurring the details and edges of the images. Ringing window of 3 × 3 is used to replace each pixel of the image.
    [Show full text]
  • Fourier Series, Fourier Transforms and the Delta Function Michael Fowler, Uva
    Fourier Series, Fourier Transforms and the Delta Function Michael Fowler, UVa. 9/4/06 Introduction We begin with a brief review of Fourier series. Any periodic function of interest in physics can be expressed as a series in sines and cosines—we have already seen that the quantum wave function of a particle in a box is precisely of this form. The important question in practice is, for an arbitrary wave function, how good an approximation is given if we stop summing the series after N terms. We establish here that the sum after N terms, fN (θ ) , can be written as a convolution of the original function with the function 11 δπN (x )=+( 1/ 2)( sin(Nx22 )) / sinx , that is, π f ()θ =−δθθ (′ )fd ( θ′′ ) θ. NN∫ −π The structure of the function δ N ()x (plotted below), when put together with the function f (θ ) , gives a good intuitive guide to how good an approximation the sum over N terms is going to be for a given function f ()θ . In particular, it turns out that step discontinuities are never handled perfectly, no matter how many terms are included. Fortunately, true step discontinuities never occur in physics, but this is a warning that it is of course necessary to sum up to some N where the sines and cosines oscillate substantially more rapidly than any sudden change in the function being represented. We go on to the Fourier transform, in which a function on the infinite line is expressed as an integral over a continuum of sines and cosines (or equivalently exponentials eikx ).
    [Show full text]
  • Image Deconvolution Ringing Artifact Detection and Removal Via PSF Frequency Analysis
    Image Deconvolution Ringing Artifact Detection and Removal via PSF Frequency Analysis Ali Mosleh1, J.M. Pierre Langlois1, and Paul Green2 1 Ecole´ Polytechnique de Montr´eal, Canada 2 Algolux, Canada {ali.mosleh,pierre.langlois}@polymtl.ca, [email protected] Abstract. We present a new method to detect and remove ringing artifacts produced by the deconvolution process in image deblurring tech- niques. The method takes into account non-invertible frequency com- ponents of the blur kernel used in the deconvolution. Efficient Gabor wavelets are produced for each non-invertible frequency and applied on the deblurred image to generate a set of filter responses that reveal ex- isting ringing artifacts. The set of Gabor filters is then employed in a regularization scheme to remove the corresponding artifacts from the deblurred image. The regularization scheme minimizes the responses of the reconstructed image to these Gabor filters through an alternating algorithm in order to suppress the artifacts. As a result of these steps we are able to significantly enhance the quality of the deblurred images produced by deconvolution algorithms. Our numerical evaluations us- ing a ringing artifact metric indicate the effectiveness of the proposed deringing method. Keywords: deconvolution, image deblurring, point spread function, ringing artifacts, zero-magnitude frequency. 1 Introduction Despite considerable advancements in camera lens stabilizers and shake reduc- tion hardware, blurry images are still often generated due to the camera motion during the exposure time. Hence, effective restoration is required to deblur cap- tured images. Assuming that the imaging system is shift invariant, it can be modeled as b = l ⊕ k + ω, (1) where b ∈ RMN is the blurred captured image, l ∈ RMN is the latent sharp image, k ∈ RMN×MN is the point spread function (PSF) that describes the degree of blurring of the point object captured by the camera, ω ∈ RMN is the additive noise, and ⊕ denotes the 2D convolution operator.
    [Show full text]
  • Gibbs Phenomenon in Engineering Systems
    Gibbs Phenomenon and its Applications in Science and Engineering Josué Njock Libii Engineering Department Indiana University-Purdue University Fort Wayne Fort Wayne, Indiana, 46805-1499 [email protected] Abstract Gibbs phenomenon arises in many applications. In this article, the author first discusses a brief history of this phenomenon and several of its applications in science and engineering. Then, using the Fourier series of a square-wave function and computer software in a classroom exercise, he illustrates how Gibbs phenomenon can be used to illustrate to undergraduate students the concept of nonuniform convergence of successive partial sums over the interval from 0 to B. 1. Introduction Gibbs Phenomenon is intimately related to the study of Fourier series. When a periodic function f(x) with a jump discontinuity is represented using a Fourier series, for example, it is observed that calculating values of that function using a truncated series leads to results that oscillate near the discontinuity [12]. As one includes more and more terms into the series, the oscillations persist but they move closer and closer to the discontinuity itself. Indeed, it is found that the series representation yields an overshoot at the jump, a value that is consistently larger in magnitude than that of the actual function at the jump. No matter how many terms one adds to the series, that overshoot does not disappear. Thus, partial sums that approximate f(x) do not approach f(x) uniformly over an interval that contains a point where the function is discontinuous [23]. This behavior, which appears in many practical applications, is known as Gibbs Phenomenon; it is a common example that is used to illustrate how nonuniform convergence can arise [3].
    [Show full text]
  • Dynamic System Response
    Dynamic System Response • Solution of Linear, Constant-Coefficient, Ordinary Differential Equations – Classical Operator Method – Laplace Transform Method • Laplace Transform Properties • 1st-Order Dynamic System Time and Frequency Response • 2nd-Order Dynamic System Time and Frequency Response Sensors & Actuators in Mechatronics K. Craig Dynamic System Response 1 Laplace Transform Methods • A basic mathematical model used in many areas of engineering is the linear ordinary differential equation with constant coefficients: d nq d n-1q dq a o + a o + +a o + a q = n dt n n-1 dt n-1 L 1 dt 0 o d mq d m-1q dq b i + b i + +b i + b q m dt m m-1 dt m-1 L 1 dt 0 i • qo is the output (response) variable of the system • qi is the input (excitation) variable of the system • an and bm are the physical parameters of the system Sensors & Actuators in Mechatronics K. Craig Dynamic System Response 2 • Straightforward analytical solutions are available no matter how high the order n of the equation. • Review of the classical operator method for solving linear differential equations with constant coefficients will be useful. When the input qi(t) is specified, the right hand side of the equation becomes a known function of time, f(t). • The classical operator method of solution is a three-step procedure: – Find the complimentary (homogeneous) solution qoc for the equation with f(t) = 0. – Find the particular solution qop with f(t) present. – Get the complete solution qo = qoc + qop and evaluate the constants of integration by applying known initial conditions.
    [Show full text]
  • Lecture 7 Amplifier Design 1
    ECE1371 Advanced Analog Circuits Lecture 7 Amplifier Design 1 Trevor Caldwell [email protected] Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2020-01-07 1 MOD1 & MOD2 PST 2, 3, A 1: Matlab MOD1&2 2020-01-14 2 MODN + Toolbox PST 4, B 2: Toolbox 2020-01-21 3 SC Circuits R 12, CCJM 14 2020-01-28 4 Comparator & Flash ADC CCJM 10 3: Comparator 2020-02-04 5 Example Design 1 PST 7, CCJM 14 2020-02-11 6 Example Design 2 CCJM 18 4: SC MOD2 2020-02-18 Reading Week / ISSCC 2020-02-25 7 Amplifier Design 1 2020-03-03 8 Amplifier Design 2 2020-03-10 9 Noise in SC Circuits 2020-03-17 10 Nyquist-Rate ADCs CCJM 15, 17 Project 2020-03-24 11 Mismatch & MM-Shaping PST 6 2020-03-31 12 Continuous-Time PST 8 2020-04-07 Exam 2020-04-21 Project Presentation (Project Report Due at start of class) 2 ECE1371 Circuit of the Day: Cascode Current Mirror • How do we bias cascode transistors to optimize signal swing? • Standard cascode current mirror wastes too much swing VX = VEFF + VT VY = 2VEFF + 2VT Minimum VZ is 2VEFF + VT, which is VT larger than necessary 3 ECE1371 What you will learn… • Choice of VEFF Several trade-offs with Noise, Bandwidth, Power,… • Amplifier Topology • Amplifier Settling Dominant Pole, Zero and Non-Dominant Pole • Gain-Boosting Stability, Pole-Zero Doublet • Delaying vs. Non-Delaying stages 4 ECE1371 Choice of Effective Voltage • Effective Voltage VEFF = VGS -VT 2IDD 2I VEFF g C W m nox L Assumes square-law model In weak-inversion, this relationship will not hold • What are the trade-offs when choosing an appropriate effective voltage? Noise Power Bandwidth Matching Linearity Swing 5 ECE1371 Thermal Noise and VEFF • Noise Current and Noise Voltage 2 2 4kT IkTgnm 4 Vn gm • Ex.
    [Show full text]