The Lindbladian Form and the Reincarnation of Felix Bloch's

Total Page:16

File Type:pdf, Size:1020Kb

The Lindbladian Form and the Reincarnation of Felix Bloch's Magn. Reson., 2, 689–698, 2021 Open Access https://doi.org/10.5194/mr-2-689-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The Lindbladian form and the reincarnation of Felix Bloch’s generalized theory of relaxation Thomas M. Barbara Advanced Imaging Research Center, Oregon Health and Sciences University, Portland, OR 97239, USA Correspondence: Thomas M. Barbara ([email protected]) Received: 21 May 2021 – Discussion started: 27 May 2021 Revised: 6 July 2021 – Accepted: 7 July 2021 – Published: 26 August 2021 Abstract. The relationship between the classic magnetic resonance density matrix relaxation theories of Bloch and Hubbard and the modern Lindbladian master equation methods are explored. These classic theories are in full agreement with the latest results obtained by the modern methods. A careful scrutiny shows that this also holds true for Redfield’s later treatment, offered in 1965. The early contributions of Bloch and Hubbard to rotating-frame relaxation theory are also highlighted. Taken together, these seminal efforts of Bloch and Hubbard can enjoy a new birth of contemporary relevance in magnetic resonance. 1 Introduction Levitt have resolved a long-standing and long misunderstood issue. In a recent and important publication, Bengs and Levitt This confusion over the results of Bloch and Hubbard is (2019) formalize NMR relaxation theory for systems that de- likely due, in part, to the use of difficult notation by Bloch. viate significantly from the equilibrium state, which are con- Hubbard’s treatment is a significant improvement but also ditions that invalidate the high-temperature weak-ordering possesses a few obscure aspects. In that situation, it is not dif- approximation, a corner stone in the commonly used Red- ficult to understand that nearly all NMR researchers rely on field theory (Redfield, 1957). Bengs and Levitt employed the simpler Redfield formalism, especially given the fact that very modern methods that arose in the late 1970s and are now the conditions under which the approximations are applica- fundamental in the topic of open quantum systems. These ble are those encountered in the vast majority of cases. Bengs methods are often referred to eponymously as the “Lindbla- and Levitt make a detailed comparison between other pro- dian Form”. In addition to the work of Bengs and Levitt, a posals for a more proper relaxation theory that naturally con- useful tutorial on this topic can be found in the work of Man- tains the correct equilibrium steady state, and all are found to zano (2020). Even though many, if not all, of the classic pa- be defective in one way or another. One argument for the im- pers are cited in their offering of their own Lindbladian anal- portance of Bengs and Levitt’s effort is their unequivocal and ysis, Bengs and Levitt were not aware that a result identical independent confirmation of the success of Bloch and Hub- to their own was already offered by Bloch (1957) and mas- bard over the other formulations. The claim, that a significant terly expounded upon by Hubbard (1961). This conclusion aspect of relaxation theory, with an overcast coastline, now can be ascertained by a glance at Table 1 of (Bengs, 2019), enjoys blue sky, is a fair one. where references to neither Bloch nor Hubbard appear in the A brief exposition of Bloch’s main results, by way of Hub- rightmost column. From a study of past efforts, as reviewed bard, using Hubbard’s own notation, appears therefore to be a by Bengs and Levitt along with their own results, this holds worthwhile endeavor, with historical importance and reason- for Abragam, for Jeener, and for Ernst. The significance of able expectations that such an effort will be of some interest Bloch and Hubbard has gone unappreciated by the NMR to NMR researchers in general. How this task has fallen into community for decades. By approaching the problem from the hands of the author may also be of some help in orienting a new perspective and, importantly, with new experimental the reader. measurements on specially prepared spin systems, Bengs and Published by Copernicus Publications on behalf of the Groupement AMPERE. 690 T. M. Barbara: The Lindbladian form The origins reside in the author’s thesis work, a part of mensions (Gorini et al., 1976) as well as for a general which involved the problem of anisotropic spin–lattice relax- Hilbert space (Lindblad, 1976). Because of these com- ation measurements for deuterated molecules dissolved in a bined efforts, the Lindbladian form is also often referred liquid crystalline matrix. This induced the author to study all to as the GKSL equation (Gorini–Kossakowski–Sudarshan– the early papers on relaxation theory very carefully. Discov- Lindblad). For finite dimensional problems, as is pertinent ering the significance of Bloch, and the clarity of Hubbard’s to NMR applications, it is possible to offer a straightfor- exposition, left an indelible impression, even though the au- ward method of construction that is reasonably motivated and thor happily used the simpler Redfield formalism for the task which uses elementary operator algebra. What follows be- at hand. The author abandoned the field in 1988 to pursue low is very much ex post facto, and it was developed by the other interests but always enjoyed reading the current NMR author after reading Bengs and Levitt (2019). It is not with- relaxation literature. Twenty-five years later, a coworker gen- out precedent however. In an interesting historical overview tly persuaded the author to work out aspects of relaxation of the Lindbladian form (Chruscinski and Pascazio, 2017), and exchange during adiabatic sweeps (Barbara, 2016). Af- one can find examples of nearly identical approaches and ter completing that task, the author reacquainted himself with even a very early use of the Lindbladian form by Landau Bloch and Hubbard in order to understand some lingering de- in 1927. For a very readable tutorial and overview, Man- tails. This effort fully prepared the author to recognize how zano and Gyamfi are recommended. For strictly mathemat- the work of Bloch and Hubbard tied into, and formed a prece- ical proofs on the semi-group, Gorini (1976) and Lindblad dent for, the recent efforts of Bengs and Levitt (2019). (1976) should be consulted. The reader should not interpret The main goal is then to go beyond a citation and demon- what follows as a replacement of the rigorous mathemati- strate the equivalence of the major result in Bengs and Levitt cal proofs of the semi-group. The key to the approach is in to that of Bloch and Hubbard. The significant and original the importance of matrix factoring. Indeed, matrix factoring result offered here is in the mathematical analysis required to in terms of Kronecker products is an essential ingredient in reveal the equivalent success of Bloch and Hubbard towards the mathematical proofs, but its role is not often explicitly the problem confronted and solved by Bengs and Levitt by highlighted in the manner given here. Matrix products also their use of Lindbladian methods. The effort is not trivial, arise in a straightforward manner when relaxation theory is and it requires a careful study of Hubbard’s notation and approached by way of weak coupling perturbation theory for the development of symmetry properties that Hubbard does the spin system and the bath, so in this case the spin matri- not provide. Furthermore, Hubbard offers expressions that in ces are already factored. Along the way, the simplest Lind- some ways are superior to the “fully reduced” Lindbladian bladian, i.e., the one used for exchange in NMR and which form, as will be discussed in Sect. 3. In the conclusion sec- involves the factoring of the identity operator, is presented. tion, the relation of these aspects of relaxation theory to later As an ansatz, one can start from a generalized “state vec- work by Redfield is commented on. tor” dynamics, governed by a general complex operator M A discussion of the Lindbladian form is presented before- X hand, from a simple and very direct approach which pos- cPi D Mij cj : (1) sesses useful didactics, thereby allowing non-experts to ap- j preciate the essence of the formalism without going into a In Eq. (1), M generalizes what is usually the Hamiltonian, so full review of the mathematical details involved in a rigor- the equation, in a purely analogous manner, represents a type ous proof. Since the Lindbladian approach is rather new to of “time-dependent Schrodinger equation” for a finite num- the NMR literature, it can be helpful to have a more facile ber of states. From the vector components c , we construct a presentation. Those readers interested in more details can i Hermitian rank-one “density operator” with elements find valuable sources in Bengs and Levitt (2019), Manzano (2020), and Gyamfi (2020). ∗ %ij D cic : (2) In addition to the Lindbladian form of Bloch’s generalized j theory of relaxation, we take advantage of the opportunity The square of all rank-one operators are proportional to to highlight Bloch’s and Hubbard’s early, and also largely 2 D D ∗ themselves, % α%, so in this case α 6cici . However, unrecognized, contributions to the dynamics of spin locking keep in mind that the converse does not hold true. The termi- and rotating-frame relaxation. Together these aspects form a nology of “rank” has a number of variants, and in this section basis for a renewed interest or, at the very least, a new and we adopt the usage common in the theory of linear vector greater appreciation of these classic publications. spaces (Halmos, 1958). The terms “state vector” and “density operator” have been placed in quotation marks to emphasize their heuristic labels 2 A guide to Lindblad at this early stage of the construction.
Recommended publications
  • A View on Stochastic Differential Equations Derived from Quantum Optics
    A VIEW ON STOCHASTIC DIFFERENTIAL EQUATIONS DERIVED FROM QUANTUM OPTICS FRANCO FAGNOLA AND ROLANDO REBOLLEDO Quantum Optics has had an impressive development during the last two decades. Laser–based devices are invading our every–day life: printers, pointers, a new surgical technology replacing the old scalpel, transport of information, among many other applications which give the idea of a well established theory. Even though, various theoretical problems remain open. In particular Quantum Optics continues to inspire mathematicians in their own research. This survey is aimed at giving a taste of some mathematical problems raised by Quantum Optics within the field of Stochastic Analysis. Espe- cially, we want to show the interplay between classical and non commutative stochastic differential equations associated to the so called master equations of Quantum Optics. Contents 1. Introduction 2 1.1. Notations 3 1.2. Deriving the master equation 4 2. The associated Quantum Stochastic Differential Equation 7 2.1. Quantum noises in continuous time 8 2.2. The master equation for the quantum cocycle 9 2.3. The Quantum Markov Flow 10 3. Unravelling: classical stochastic processes related to quantum flows 12 3.1. The algebra generated by the number operator 12 3.2. Position, momentum and their algebras 13 3.3. The evolution on AN , Aq, Ap. 15 4. Stationary state and the convergence towards the equilibrium 16 References 18 Research partially supported by FONDECYT grant 1960917 and the “C´atedraPresi- dencial en An´alisis Estoc´astico y F´ısica Matem´atica”. 1 2 FRANCO FAGNOLA AND ROLANDO REBOLLEDO 1. Introduction A major breakthrough of Probability Theory during the twentieth cen- tury is the advent of Stochastic Analysis with all its branches, which is being currently used in modelling phenomena in different sciences.
    [Show full text]
  • 2020 Volume 16 Issues
    Issues 1-2 2020 Volume 16 The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics PROGRESS IN PHYSICS “All scientists shall have the right to present their scientific research results, in whole or in part, at relevant scientific conferences, and to publish the same in printed scientific journals, electronic archives, and any other media.” — Declaration of Academic Freedom, Article 8 ISSN 1555-5534 The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics PROGRESS IN PHYSICS A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the abstracting and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Scientific Commons of the University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc. Electronic version of this journal: http://www.ptep-online.com Advisory Board Dmitri Rabounski, Editor-in-Chief, Founder Florentin Smarandache, Associate Editor, Founder April 2020 Vol. 16, Issue 1 Larissa Borissova, Associate Editor, Founder Editorial Board CONTENTS Pierre Millette [email protected] Dorda G. The Interpretation of the Hubble-Effect and of Human Vision Based on the Andreas Ries Differentiated Structure of Space . .3 [email protected] Tselnik F. Predictability Is Fundamental . .10 Gunn Quznetsov [email protected] Dorda G. The Interpretation of Sound on the Basis of the Differentiated Structure of Ebenezer Chifu Three-Dimensional Space . 15 [email protected] Nyambuya G. G. A Pedestrian Derivation of Heisenberg’s Uncertainty Principle on Stochastic Phase-Space .
    [Show full text]
  • Pip-2020-01.Pdf
    Issue 1 2020 Volume 16 The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics PROGRESS IN PHYSICS “All scientists shall have the right to present their scientific research results, in whole or in part, at relevant scientific conferences, and to publish the same in printed scientific journals, electronic archives, and any other media.” — Declaration of Academic Freedom, Article 8 ISSN 1555-5534 The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics PROGRESS IN PHYSICS A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the abstracting and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Scientific Commons of the University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc. Electronic version of this journal: http://www.ptep-online.com Advisory Board Dmitri Rabounski, Editor-in-Chief, Founder Florentin Smarandache, Associate Editor, Founder April 2020 Vol. 16, Issue 1 Larissa Borissova, Associate Editor, Founder Editorial Board CONTENTS Pierre Millette [email protected] Dorda G. The Interpretation of the Hubble-Effect and of Human Vision Based on the Andreas Ries Differentiated Structure of Space . .3 [email protected] Tselnik F. Predictability Is Fundamental . .10 Gunn Quznetsov [email protected] Dorda G. The Interpretation of Sound on the Basis of the Differentiated Structure of Ebenezer Chifu Three-Dimensional Space . 15 [email protected] Nyambuya G. G. A Pedestrian Derivation of Heisenberg’s Uncertainty Principle on Stochastic Phase-Space .
    [Show full text]
  • Using a Lindbladian Approach to Model Decoherence in Two Coupled Nuclear Spins Via Correlated Phase Damping and Amplitude Damping Noise Channels
    Pramana – J. Phys. (2020) 94:160 © Indian Academy of Sciences https://doi.org/10.1007/s12043-020-02027-3 Using a Lindbladian approach to model decoherence in two coupled nuclear spins via correlated phase damping and amplitude damping noise channels HARPREET SINGH1,2,ARVIND1 and KAVITA DORAI1 ,∗ 1Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81 Knowledge City, P.O. Manauli, Mohali 140 306, India 2Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany ∗Corresponding author. E-mail: [email protected] MS received 18 April 2020; revised 25 July 2020; accepted 18 August 2020 Abstract. In this work, we studied the relaxation dynamics of coherences of different orders present in a system of two coupled nuclear spins. We used a previously designed model for intrinsic noise present in such systems which considers the Lindblad master equation for Markovian relaxation. We experimentally created zero-, single- and double-quantum coherences in several two-spin systems and performed a complete state tomography and computed state fidelity. We experimentally measured the decay of zero- and double-quantum coherences in these systems. The experimental data fitted well to a model that considers the main noise channels to be a correlated phase damping (CPD) channel acting simultaneously on both spins in conjunction with a generalised amplitude damping channel acting independently on both spins. The differential relaxation of multiple-quantum coherences can be ascribed to the action of a CPD channel acting simultaneously on both the spins. Keywords. Nuclear magnetic resonance relaxation theory; Multiple quantum coherences; Lindblad master equation; Markovian noisy channels.
    [Show full text]
  • Efficient Quantum Algorithms for Simulating Lindblad Evolution
    Efficient Quantum Algorithms for Simulating Lindblad Evolution∗ Richard Cleveyzx Chunhao Wangyz Abstract We consider the natural generalization of the Schr¨odingerequation to Markovian open system dynamics: the so-called the Lindblad equation. We give a quantum algorithm for simulating the evolution of an n-qubit system for time t within precision . If the Lindbladian consists of poly(n) operators that can each be expressed as a linear combination of poly(n) tensor products of Pauli operators then the gate cost of our algorithm is O(t polylog(t/)poly(n)). We also obtain similar bounds for the cases where the Lindbladian consists of local operators, and where the Lindbladian consists of sparse operators. This is remarkable in light of evidence that we provide indicating that the above efficiency is impossible to attain by first expressing Lindblad evolution as Schr¨odingerevolution on a larger system and tracing out the ancillary system: the cost of such a reduction incurs an efficiency overhead of O(t2/) even before the Hamiltonian evolution simulation begins. Instead, the approach of our algorithm is to use a novel variation of the \linear combinations of unitaries" construction that pertains to channels. 1 Introduction The problem of simulating the evolution of closed systems (captured by the Schr¨odingerequation) was proposed by Feynman [11] in 1982 as a motivation for building quantum computers. Since then, several quantum algorithms have appeared for this problem (see subsection 1.1 for references to these algorithms). However, many quantum systems of interest are not closed but are well-captured by the Lindblad Master equation [20, 12].
    [Show full text]
  • Arxiv:1701.02936V1 [Quant-Ph]
    Lindbladian purification Christian Arenz,1, 2 Daniel Burgarth,1 Vittorio Giovannetti,3 Hiromichi Nakazato,4 and Kazuya Yuasa4 1Institute of Mathematics, Physics, and Computer Science, Aberystwyth University, Aberystwyth SY23 2BZ, UK 2Frick Laboratory, Princeton University, Princeton NJ 08544, US 3NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy 4Department of Physics, Waseda University, Tokyo 169-8555, Japan (Dated: September 16, 2018) In a recent work [D. K. Burgarth et al., Nat. Commun. 5, 5173 (2014)] it was shown that a series of frequent measurements can project the dynamics of a quantum system onto a subspace in which the dynamics can be more complex. In this subspace even full controllability can be achieved, although the controllability over the system before the projection is very poor since the control Hamiltonians commute with each other. We can also think of the opposite: any Hamiltonians of a quantum system, which are in general noncommutative with each other, can be made commutative by embedding them in an extended Hilbert space, and thus the dynamics in the extended space becomes trivial and simple. This idea of making noncommutative Hamiltonians commutative is called “Hamiltonian purification.” The original noncommutative Hamiltonians are recovered by projecting the system back onto the original Hilbert space through frequent measurements. Here we generalize this idea to open-system dynamics by presenting a simple construction to make Lindbladians, as well as Hamiltonians, commutative on a larger space with an auxiliary system. We show that the original dynamics can be recovered through frequently measuring the auxiliary system in a non-selective way.
    [Show full text]
  • Efficient Quantum Algorithms for Simulating Lindblad Evolution
    Efficient Quantum Algorithms for Simulating Lindblad Evolution∗† Richard Cleve1 and Chunhao Wang2 1 Institute for Quantum Computing, University of Waterloo, Waterloo, Canada; and Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada; and Canadian Institute for Advanced Research, Toronto, Canada [email protected] 2 Institute for Quantum Computing, University of Waterloo, Waterloo, Canada; and Cheriton School of Computer Science, University of Waterloo, Canada [email protected] Abstract We consider the natural generalization of the Schrödinger equation to Markovian open system dynamics: the so-called the Lindblad equation. We give a quantum algorithm for simulating the evolution of an n-qubit system for time t within precision . If the Lindbladian consists of poly(n) operators that can each be expressed as a linear combination of poly(n) tensor products of Pauli operators then the gate cost of our algorithm is O(t polylog(t/)poly(n)). We also obtain similar bounds for the cases where the Lindbladian consists of local operators, and where the Lindbladian consists of sparse operators. This is remarkable in light of evidence that we provide indicating that the above efficiency is impossible to attain by first expressing Lindblad evolution as Schrödinger evolution on a larger system and tracing out the ancillary system: the cost of such a reduction incurs an efficiency overhead of O(t2/) even before the Hamiltonian evolution simulation begins. Instead, the approach of our algorithm is to use a novel variation of the “linear combinations of unitaries” construction that pertains to channels. 1998 ACM Subject Classification F.1.1 Models of Computation Keywords and phrases Quantum algorithms, open quantum systems, Lindblad simulation Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.17 1 Introduction The problem of simulating the evolution of closed systems (captured by the Schrödinger equation) was proposed by Feynman [12] in 1982 as a motivation for building quantum computers.
    [Show full text]
  • Existence, Uniqueness and Approximation for Stochastic Schrodinger Equation: the Poisson Case Clement Pellegrini
    Existence, uniqueness and approximation for stochastic Schrodinger equation: the Poisson case Clement Pellegrini To cite this version: Clement Pellegrini. Existence, uniqueness and approximation for stochastic Schrodinger equation: the Poisson case. 2009. hal-00174357v2 HAL Id: hal-00174357 https://hal.archives-ouvertes.fr/hal-00174357v2 Preprint submitted on 6 Mar 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Existence, Uniqueness and Approximation of a Stochastic Schr¨odinger Equation: the Poisson Case Cl´ement PELLEGRINI Institut C.Jordan Universit´eC.Bernard, lyon 1 21, av Claude Bernard 69622 Villeurbanne Cedex France e-mail: [email protected] March 6, 2009 Abstract In quantum physics, recent investigations deal with the so-called ”quantum trajec- tory” theory. Heuristic rules are usually used to give rise to “stochastic Schr¨odinger equations” which are stochastic differential equations of non-usual type describing the physical models. These equations pose tedious problems in terms of mathematical and physical justifications: notion of solution, existence, uniqueness... In this article, we concentrate on a particular case: the Poisson case. Random Measure theory is used in order to give rigorous sense to such equations. We prove existence and uniqueness of a solution for the associated stochastic equation.
    [Show full text]
  • The Lindbladian Form and the Reincarnation of Felix Bloch's
    The Lindbladian Form And The Reincarnation of Felix Bloch’s Generalized Theory of Relaxation Thomas M. Barbara Advanced Imaging Research Center Oregon Health and Sciences University Portland, OR 97239 Nov 10th, 2020 Email: [email protected] 1 Abstract The relationship between the classic magnetic resonance density matrix relaxation theories of Bloch and Hubbard, and the modern Lindbladian master equation methods are explored. These classic theories are in full agreement with the latest results obtained by the modern methods. A careful scrutiny shows that this also holds true for Redfield’s later treatment, offered in 1965. The early contributions of Bloch and Hubbard to rotating frame relaxation theory are also highlighted. Taken together, these seminal efforts of Bloch and Hubbard can enjoy a new birth of contemporary relevance in magnetic resonance. 2 1. Introduction In a recent and important publication [1], Bengs and Levitt formalize relaxation theory for systems that deviate significantly from the equilibrium state, conditions that invalidate the high temperature, weak ordering approximation, a corner stone in the commonly used Redfield theory [2]. Bengs and Levitt employed very modern methods that arose in the late 1970’s and are now fundamental in the topic of open quantum systems. These methods are often referred to eponymously as the “Lindbladian Form”. In addition to [1] a useful tutorial on this topic can be found in the work of Manzano [3]. Even though many, if not all of the classic papers are cited in their offering of their own Lindbladian analysis, the authors of [1], were not aware that a result identical to theirs was already offered by Bloch in 1957 [4], and masterly expounded upon by Hubbard in 1961 [5].
    [Show full text]
  • Dissipation in Linear and Non-Linear Quantum Systems
    ספריות הטכניון The Technion Libraries בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס Irwin and Joan Jacobs Graduate School © All rights reserved to the author This work, in whole or in part, may not be copied (in any media), printed, translated, stored in a retrieval system, transmitted via the internet or other electronic means, except for "fair use" of brief quotations for academic instruction, criticism, or research purposes only. Commercial use of this material is completely prohibited. © כל הזכויות שמורות למחבר/ת אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט. Library Central Elyachar Dissipation Models of Quantum Systems Technology, of in Linear and Nonlinear Amit Tsabary Institute Israel - Technion © Library Central Elyachar Technology, of Institute Israel - Technion © Library Dissipation in Linear and Nonlinear Models of Quantum Systems Central Research Thesis Elyachar Submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics Technology, of Amit Tsabary Institute Israel - Submitted to the Senate of the Technion — Israel Institute of Technology Nisan 5777 Haifa March 2017 Technion © Library Central Elyachar Technology, of Institute Israel - Technion © This research was carried out under the supervision of Prof. Joseph Avron, in the Faculty of Physics. Library Acknowledgements I would like to thank Prof. Avron for his guidance and dedication to this research. I would like to thank Dr. Oded Kenneth for many fruitful discussions and for making significant contributions to this work.
    [Show full text]
  • Arxiv:1112.1303V1
    Quantum Fluctuation Relations for the Lindblad Master Equation R. Chetrite Laboratoire J. A. Dieudonn´e, UMR CNRS 6621, Universit´ede Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France K. Mallick Institut de Physique Th´eorique, CEA Saclay, 91191 Gif-sur-Yvette, France (Dated: May 24, 2018) An open quantum system interacting with its environment can be modeled under suitable as- sumptions as a Markov process, described by a Lindblad master equation. In this work, we derive a general set of fluctuation relations for systems governed by a Lindblad equation. These identities provide quantum versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response regime, these fluctuation relations yield a fluctuation-dissipation theorem (FDT) valid for a station- ary state arbitrarily far from equilibrium. For a closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula. PACS numbers: I. INTRODUCTION Fluctuations in non-equilibrium systems have been shown to satisfy various remarkable relations [20, 21, 36, 41, 47, 48, 54] discovered during the last twenty years. These results have lead to fierce discussions concerning the nature of heat, work and entropy, raising the fundamental issue of understanding the interactions between a given system and its environment (e.g., a thermal bath). In the classical realm, these problems have been progressively clarified whereas they are still under investigation in the quantum world. Historically, quantum fluctuation relations were first studied by Callen and Welton in 1950 [12]. These authors derived a Fluctuation-Dissipation Theorem for a closed quantum system isolated from its environment, initially in thermal equilibrium and suddenly perturbed by a small time-dependent term added to the time-independent Hamiltonian H.
    [Show full text]
  • Stability of Local Quantum Dissipative Systems
    Communications in Mathematical Physics manuscript No. (will be inserted by the editor) Stability of local quantum dissipative systems Toby S. Cubitt1, Angelo Lucia2, Spyridon Michalakis3, David Perez-Garcia2 1 DAMTP, University of Cambridge, Cambridge CB3 0WA, UK, E-mail: [email protected] 2 Dpto. de An´alisis Matem´atico,Universidad Complutense de Madrid, 28040 Madrid, Spain, E-mail: [email protected] E-mail: [email protected] 3 Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA, E-mail: [email protected] The date of receipt and acceptance will be inserted by the editor Abstract: Open quantum systems weakly coupled to the environment are mod- eled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that de- compose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are po- tentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time which scales logarithmically with the system size. The proof relies on Lieb-Robinson bounds, which describe a finite group velocity for propagation of information in local systems.
    [Show full text]