An Algebraic Theory of Information: an Introduction and Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specification of Agent Explicit Knowledge in Cryptographic
International Journal of Electrical and Computer Engineering 4:2 2009 Specification of Agent Explicit Knowledge in Cryptographic Protocols Khair Eddin Sabri, Ridha Khedri, and Jason Jaskolka Department of Computing and Software Faculty of Engineering McMaster University {sabrike, khedri, jaskolj}@mcmaster.ca Abstract— Cryptographic protocols are widely used in various The procedural knowledge involves a set of mecha- applications to provide secure communications. They are usually nisms/functions that enables an agent to obtain new informa- represented as communicating agents that send and receive messages. tion from its explicit knowledge. For example, if the explicit These agents use their knowledge to exchange information and communicate with other agents involved in the protocol. An agent knowledge of an agent contains an encrypted message as well knowledge can be partitioned into explicit knowledge and procedural as the key and the cipher used to decrypt the message, then by knowledge. The explicit knowledge refers to the set of information using the procedural knowledge, the secret can be obtained. which is either proper to the agent or directly obtained from other In this paper, we focus only on the explicit knowledge. agents through communication. The procedural knowledge relates to Both parts of the agent knowledge are necessary in ana- the set of mechanisms used to get new information from what is already available to the agent. lyzing cryptographic protocols. When we analyze the liter- In this paper, we propose a mathematical framework which spec- ature using this classification of agent knowledge, we find ifies the explicit knowledge of an agent involved in a cryptographic several representations of that knowledge. -
Non-Locality, Contextuality and Valuation Algebras: a General Theory of Disagreement Samson Abramsky1, Giovanni Carù1
Non-locality, contextuality and valuation algebras: a general theory of disagreement Samson Abramsky1, Giovanni Carù1 1Department of Computer Science, University of Subject Areas: Oxford, Wolfson Building, Parks Road, Oxford OX1 Quantum information, quantum 3QD, U.K. foundations, generic inference Keywords: We establish a strong link between two apparently Contextuality, generic inference, unrelated topics: the study of conflicting information valuation algebras, algorithms in the formal framework of valuation algebras, and the phenomena of non-locality and contextuality. In particular, we show that these peculiar features of Email addresses: quantum theory are mathematically equivalent to a Samson Abramsky general notion of disagreement between information [email protected] sources. This result vastly generalises previously observed connections between contextuality, relational databases, constraint satisfaction problems, and logical paradoxes, and gives further proof that contextual behaviour is not a phenomenon limited to quantum physics, but pervades various domains of mathematics and computer science. The connection allows to translate theorems, methods and algorithms from one field to the other, and paves the way for the application of generic inference algorithms to study contextuality. 1. Introduction Non-locality and contextuality are characteristic features of quantum theory which have been recently proven to play a crucial role as fundamental resources for quantum information and computation [1,2]. In 2011, Abramsky and Brandenburger introduced an abstract mathematical framework based on sheaf theory to describe these phenomena in a unified treatment, thereby providing a common general theory for the study of non-locality and contextuality, which had been carried out in a rather arXiv:1911.03521v1 [quant-ph] 8 Nov 2019 concrete, example-driven fashion until then [3]. -
Second-Order Algebraic Theories (Extended Abstract)
Second-Order Algebraic Theories (Extended Abstract) Marcelo Fiore and Ola Mahmoud University of Cambridge, Computer Laboratory Abstract. Fiore and Hur [10] recently introduced a conservative exten- sion of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respec- tively provide a model theory and a formal deductive system for lan- guages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categori- cal algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equiva- lences are established: at the syntactic level, that of second-order equa- tional presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic trans- lation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding. 1 Introduction Algebra started with the study of a few sample algebraic structures: groups, rings, lattices, etc. Based on these, Birkhoff [3] laid out the foundations of a general unifying theory, now known as universal algebra. Birkhoff's formalisation of the notion of algebra starts with the introduction of equational presentations. These constitute the syntactic foundations of the subject. Algebras are then the semantics or model theory, and play a crucial role in establishing the logical foundations. Indeed, Birkhoff introduced equational logic as a sound and complete formal deductive system for reasoning about algebraic structure. -
On Homomorphism of Valuation Algebras∗
Communications in Mathematical Research 27(1)(2011), 181–192 On Homomorphism of Valuation Algebras∗ Guan Xue-chong1,2 and Li Yong-ming3 (1. College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062) (2. School of Mathematical Science, Xuzhou Normal University, Xuzhou, Jiangsu, 221116) (3. College of Computer Science, Shaanxi Normal University, Xi’an, 710062) Communicated by Du Xian-kun Abstract: In this paper, firstly, a necessary condition and a sufficient condition for an isomorphism between two semiring-induced valuation algebras to exist are presented respectively. Then a general valuation homomorphism based on different domains is defined, and the corresponding homomorphism theorem of valuation algebra is proved. Key words: homomorphism, valuation algebra, semiring 2000 MR subject classification: 16Y60, 94A15 Document code: A Article ID: 1674-5647(2011)01-0181-12 1 Introduction Valuation algebra is an abstract formalization from artificial intelligence including constraint systems (see [1]), Dempster-Shafer belief functions (see [2]), database theory, logic, and etc. There are three operations including labeling, combination and marginalization in a valua- tion algebra. With these operations on valuations, the system could combine information, and get information on a designated set of variables by marginalization. With further re- search and theoretical development, a new type of valuation algebra named domain-free valuation algebra is also put forward. As valuation algebra is an algebraic structure, the concept of homomorphism between valuation algebras, which is derived from the classic study of universal algebra, has been defined naturally. Meanwhile, recent studies in [3], [4] have showed that valuation alge- bras induced by semirings play a very important role in applications. -
ONTOLOGICAL ENGINEERING for PUBLIC and PRIVATE PROCUREMENT Ontological Engineering for Public and Private Procurement
EUROPEAN UNION BRAZIL ONTOLOGICAL ENGINEERING FOR PUBLIC AND PRIVATE PROCUREMENT Ontological Engineering for Public and Private Procurement ONTOLOGICAL ENGINEERING FOR PUBLIC AND PRIVATE PROCUREMENT Ontological Engineering for Public and Private Procurement MINISTRY OF GOVERNMENT SECRETARIAT MINISTER OF STATE GEDDEL VIEIRA LIMA SECRETARY OF MICRO AND SMALL ENTERPRISES JOSÉ RICARDO DA VEIGA DIRECTOR OF MARKETS AND INNOVATION ALEXANDRE MONTEIRO E SILVA TECHNICAL SUPPORT TEAM FABIO MEDEIROS DE SOUZA (GENERAL-COORDINATOR OF MARKETS ACCESS) CARLOS VELOSO DE MELO JR. (FOREIGN TRADE ANALYST) JANIO MOREIRA DA COSTA (INFORMATION TECHNOLOGY ANALYST) EUROPEAN UNION DELEGATION TO BRAZIL HEAD OF THE EUROPEAN UNION DELEGATION JOÃO GOMES CRAVINHO MINISTER COUNSELLOR - HEAD OF DEVELOPMENT AND COOPERATION SECTION THIERRY DUDERMEL COOPERATION ATTACHÉ – EU-BRAZIL SECTOR DIALOGUES SUPPORT FACILITY COORDINATOR ONTOLOGICAL ASIER SANTILLAN LUZURIAGA IMPLEMENTING CONSORTIUM CESO DEVELOPMENT CONSULTANTS/FIIAPP/INA/CEPS ENGINEERING FOR MINISTRY OF PLANNING, DEVELOPMENT AND MANAGEMENT PUBLIC AND PRIVATE MINISTER OF STATE DYOGO OLIVEIRA SECRETARY OF MANAGEMENT PROCUREMENT GLEISSON CARDOSO RUBIN PROJECT NATIONAL DIRECTOR MARCELO MENDES BARBOSA CONTACTS PROJECT COORDINATION UNIT Authors: EUROPEAN UNION-BRAZIL SECTOR DIALOGUES SUPPORT FACILITY SECRETARIAT OF PUBLIC MANAGEMENT Edilson Ferneda MINISTRY OF PLANNING, DEVELOPMENT AND MANAGEMENT [email protected] TELEPHONE: + 55 61 2020.4645/4168/4785 Fernando William Cruz [email protected] [email protected] WWW.SECTORDIALOGUES.ORG © 2016 EUROPEAN UNION Brasília • March • 2016 THE CONTENT OF THIS PUBLICATION DOES NOT REFLECT THE OFFICIAL OPINION OF THE EUROPEAN UNION AND THE BRAZILIAN GOVERNMENT. RESPONSIBILITY FOR THE INFORMATION AND VIEWS EXPRESSED THEREIN LIES ENTIRELY WITH THE AUTHOR. Ontological Engineering for Public and Private Procurement LIST OF FIGURES AND CHARTS Figure 1.1 Some of the main knowledge organization systems ....................... -
Foundations of Algebraic Theories and Higher Dimensional Categories
Foundations of Algebraic Theories and Higher Dimensional Categories Soichiro Fujii arXiv:1903.07030v1 [math.CT] 17 Mar 2019 A Doctor Thesis Submitted to the Graduate School of the University of Tokyo on December 7, 2018 in Partial Fulfillment of the Requirements for the Degree of Doctor of Information Science and Technology in Computer Science ii Abstract Universal algebra uniformly captures various algebraic structures, by expressing them as equational theories or abstract clones. The ubiquity of algebraic structures in math- ematics and related fields has given rise to several variants of universal algebra, such as symmetric operads, non-symmetric operads, generalised operads, and monads. These variants of universal algebra are called notions of algebraic theory. Although notions of algebraic theory share the basic aim of providing a background theory to describe alge- braic structures, they use various techniques to achieve this goal and, to the best of our knowledge, no general framework for notions of algebraic theory which includes all of the examples above was known. Such a framework would lead to a better understand- ing of notions of algebraic theory by revealing their essential structure, and provide a uniform way to compare different notions of algebraic theory. In the first part of this thesis, we develop a unified framework for notions of algebraic theory which includes all of the above examples. Our key observation is that each notion of algebraic theory can be identified with a monoidal category, in such a way that theories correspond to monoid objects therein. We introduce a categorical structure called metamodel, which underlies the definition of models of theories. -
Logic and the Development of Programming Languages, 1930–1975
LOGIC AND THE DEVELOPMENT OF PROGRAMMING LANGUAGES, 1930–1975 Peter Mark Priestley University College London Thesis submitted in fulfillment of requirements for the degree of PhD. May 2008 2 I, Peter Mark Priestley, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract Compared with the history of computing hardware, the history of software is in a relatively unde- veloped state. In particular, the history of programming languages still consists for the most part of technical accounts presenting a rather Whiggish perspective on developments. Given the importance of software in the contemporary world, however, it is important to develop a more sophisticated un- derstanding of the medium in which it is expressed. This thesis considers some aspects of this history with the aim of examining the influence of formal logic on the evolution of notations for expressing computer programs. It is argued that this was not a natural or inevitable application of theory to practice, as is sometimes suggested, but a complex and contingent process with a rich history of its own. Two introductory chapters discuss the work on computability carried out by logicians in the mid-1930s, and the controversial topic of the role of logic in the invention of the computer. The body of the thesis proceeds chronologically, considering machine codes, the introduction of higher level notations, structured programming and software engineering, and the early object-oriented languages. The picture that emerges is that formal logic was deliberately employed by programming lan- guage designers to provide a model for a theoretical understanding of programming languages and the process of program development. -
Categorical Models of Type Theory
Categorical models of type theory Michael Shulman February 28, 2012 1 / 43 Theories and models Example The theory of a group asserts an identity e, products x · y and inverses x−1 for any x; y, and equalities x · (y · z) = (x · y) · z and x · e = x = e · x and x · x−1 = e. I A model of this theory (in sets) is a particularparticular group, like Z or S3. I A model in spaces is a topological group. I A model in manifolds is a Lie group. I ... 3 / 43 Group objects in categories Definition A group object in a category with finite products is an object G with morphisms e : 1 ! G, m : G × G ! G, and i : G ! G, such that the following diagrams commute. m×1 (e;1) (1;e) G × G × G / G × G / G × G o G F G FF xx 1×m m FF xx FF m xx 1 F x 1 / F# x{ x G × G m G G ! / e / G 1 GO ∆ m G × G / G × G 1×i 4 / 43 Categorical semantics Categorical semantics is a general procedure to go from 1. the theory of a group to 2. the notion of group object in a category. A group object in a category is a model of the theory of a group. Then, anything we can prove formally in the theory of a group will be valid for group objects in any category. 5 / 43 Doctrines For each kind of type theory there is a corresponding kind of structured category in which we consider models. -
The Mathematical Theory of Information
Hecke, Oswald TeichmOller, Ernst Witt, are used for quantitative problems, Richard Courant, Edmund Landau, Fe- The Mathematical while hits (the number of correct clas- lix Hausdorff, Ernst Peschl, Paul Riebe- sifications), reliability, and nuts (von sell, Helmut Ulm, Alfred Stohr, Ernst Neumann's utility) appear in more qual- Zermelo, Gerhard Gentzen, Hans Pe- Theory of itative analyses. tersson, Erich K~ihler, and Wilhelm SOss. Although the author's ambition is to The names on this list range from the Information develop a (if not the) "mathematical the- committed Nazis, through non-Nazi by Jan Kahre ory of information," the embodiment is right wing nationalists, to naive, other- pre-mathematical. It is neither a naive worldly men who seemingly didn't BOSTON, KLUWER. 2002. 520 PP., US$50.O0 mathematical theory (as in naive set the- ISBN: 1-4020-7064-0 know much of what was going on, to ory) nor is it abused mathematics (in the those who stumbled into situations that REVIEWED BY CRISTIAN S. CALUDE sense of mathematics applied in mean- were beyond their control. The stories ingless ways). However, the mathemat- are gripping. In assessing guilt the ndoubtedly, the title of the book ical formalism is too rudimentary for a reader is hard pressed to decide with was well chosen: it is provoca- theory; I illustrate this point with two any certainty which people fall into U tive, promising, and full of infor- examples, the definitions of probability which categories. Teichm/_iller comes mation. Syntactically, the title can be and algorithmic complexity. The proba- off very badly, for example. -
Continuity in Information Algebras 3
August 28, 2018 22:6 Continuity CONTINUITY IN INFORMATION ALGEBRAS: A SURVEY ON THE RELATIONSHIP BETWEEN TWO TYPES OF INFORMATION ALGEBRAS XUECHONG GUAN∗ College of Mathematics and Information Science Shaanxi Normal University Xi’an, 710062, China [email protected] YONGMING LI College of Computer Science Shaanxi Normal University Xi’an, 710062, China [email protected] Received 24 June 2010 Revised (revised date) In this paper, the continuity and strong continuity in domain-free information algebras and labeled information algebras are introduced respectively. A more general concept of continuous function which is defined between two domain-free continuous information algebras is presented. It is shown that, with the operations combination and focusing, the set of all continuous functions between two domain-free s-continuous information algebras forms a new s-continuous information algebra. By studying the relationship between domain-free information algebras and labeled information algebras, it is demonstrated arXiv:1201.0414v1 [cs.AI] 2 Jan 2012 that they do correspond to each other on s-compactness. Keywords: domain-free continuous information algebra; labeled continuous information algebra; continuous function; compactness. 1. Introduction Inference under uncertainty is a common problem in the real world. Thus, for pieces of information from different sources, there always exist two fundamental aspects that to combine information and to exact information on a designated domain. Based on the above consideration, the valuation-based system (VBS) was first in- troduced by Shenoy. 1 Kohlas, in Ref. 2, has exactly introduced the concept of information algebra. We can see that information algebra is an algebraic structure links up with local computation and inference for treating uncertainty or, more ∗Work Address: College of Mathematic Science, Xuzhou Normal University, Xuzhou, 221116, China. -
An Outline of Algebraic Set Theory
An Outline of Algebraic Set Theory Steve Awodey Dedicated to Saunders Mac Lane, 1909–2005 Abstract This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes the class of algebraic models, and the axioms provided for the abstract algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are subsumed, and the prospects for further such unification seem bright. 1 Contents 1 Introduction 3 2 The category of classes 10 2.1 Smallmaps ............................ 12 2.2 Powerclasses............................ 14 2.3 UniversesandInfinity . 15 2.4 Classcategories .......................... 16 2.5 Thetoposofsets ......................... 17 3 Algebraic models of set theory 18 3.1 ThesettheoryBIST ....................... 18 3.2 Algebraic soundness of BIST . 20 3.3 Algebraic completeness of BIST . 21 4 Classes as ideals of sets 23 4.1 Smallmapsandideals . .. .. 24 4.2 Powerclasses and universes . 26 4.3 Conservativity........................... 29 5 Ideal models 29 5.1 Freealgebras ........................... 29 5.2 Collection ............................. 30 5.3 Idealcompleteness . .. .. 32 6 Variations 33 References 36 2 1 Introduction Algebraic set theory (AST) is a new approach to the construction of models of set theory, invented by Andr´eJoyal and Ieke Moerdijk and first presented in [16]. -
On the Structural Link Between Ontologies and Organised Data Sets on the STRUCTURAL LINK BETWEEN ONTOLOGIES AND
On the Structural Link Between Ontologies and Organised Data Sets ON THE STRUCTURAL LINK BETWEEN ONTOLOGIES AND ORGANISED DATA SETS BY ALICIA MARINACHE1, B.Eng. a thesis submitted to the department of computing and software and the school of graduate studies of mcmaster university in partial fulfilment of the requirements for the degree of Master of Applied Science c Copyright by Alicia Marinache2, February 2016 All Rights Reserved Master of Applied Science (2016) McMaster University (Software Engineering) Hamilton, Ontario, Canada TITLE: On the Structural Link Between Ontologies and Organ- ised Data Sets AUTHOR: Alicia Marinache3 B.Eng. (Software Engineering) University Politechnica, Bucharest, Romania SUPERVISOR: Dr. Ridha Khedri NUMBER OF PAGES: x, 132 ii To my family To my late father, who would have loved to see me pursuing my dreams Abstract "Relationships are complicated, sometimes interesting and can often appear unpredictable. This is just the type of situation that mathematics can help you with." - John D. Barrow, 100 essential things you didn't know you didn't know The proposed work focuses on articulating a mathematical framework to capture the structure of an ontology and relate it to organised data sets. In the discussed frame- work, the ontology structure captures the mereological relationships between con- cepts. It also uses other relationships relevant to the considered domain of application. The organized dataset component of the framework is represented using diagonal-free cylindric algebra. The proposed framework, called the domain-information structure, enables us to link concepts to data sets through a number of typed data operators. The new framework enhances concurrent reasoning on data for knowledge generation, which is essential for handling big data.