Algebraic Theories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2.1 the Algebra of Sets
Chapter 2 I Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations between sets, developing an “algebra of sets” that strongly resembles aspects of the algebra of sentential logic. In addition, as we discussed in chapter 1, a fundamental goal in mathematics is crafting articulate, thorough, convincing, and insightful arguments for the truth of mathematical statements. We continue the development of theorem-proving and proof-writing skills in the context of basic set theory. After exploring the algebra of sets, we study two number systems denoted Zn and U(n) that are closely related to the integers. Our approach is based on a widely used strategy of mathematicians: we work with specific examples and look for general patterns. This study leads to the definition of modified addition and multiplication operations on certain finite subsets of the integers. We isolate key axioms, or properties, that are satisfied by these and many other number systems and then examine number systems that share the “group” properties of the integers. Finally, we consider an application of this mathematics to check digit schemes, which have become increasingly important for the success of business and telecommunications in our technologically based society. Through the study of these topics, we engage in a thorough introduction to abstract algebra from the perspective of the mathematician— working with specific examples to identify key abstract properties common to diverse and interesting mathematical systems. 2.1 The Algebra of Sets Intuitively, a set is a “collection” of objects known as “elements.” But in the early 1900’s, a radical transformation occurred in mathematicians’ understanding of sets when the British philosopher Bertrand Russell identified a fundamental paradox inherent in this intuitive notion of a set (this paradox is discussed in exercises 66–70 at the end of this section). -
The Five Fundamental Operations of Mathematics: Addition, Subtraction
The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms Kenneth A. Ribet UC Berkeley Trinity University March 31, 2008 Kenneth A. Ribet Five fundamental operations This talk is about counting, and it’s about solving equations. Counting is a very familiar activity in mathematics. Many universities teach sophomore-level courses on discrete mathematics that turn out to be mostly about counting. For example, we ask our students to find the number of different ways of constituting a bag of a dozen lollipops if there are 5 different flavors. (The answer is 1820, I think.) Kenneth A. Ribet Five fundamental operations Solving equations is even more of a flagship activity for mathematicians. At a mathematics conference at Sundance, Robert Redford told a group of my colleagues “I hope you solve all your equations”! The kind of equations that I like to solve are Diophantine equations. Diophantus of Alexandria (third century AD) was Robert Redford’s kind of mathematician. This “father of algebra” focused on the solution to algebraic equations, especially in contexts where the solutions are constrained to be whole numbers or fractions. Kenneth A. Ribet Five fundamental operations Here’s a typical example. Consider the equation y 2 = x3 + 1. In an algebra or high school class, we might graph this equation in the plane; there’s little challenge. But what if we ask for solutions in integers (i.e., whole numbers)? It is relatively easy to discover the solutions (0; ±1), (−1; 0) and (2; ±3), and Diophantus might have asked if there are any more. -
A Quick Algebra Review
A Quick Algebra Review 1. Simplifying Expressions 2. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Exponents 9. Quadratics 10. Rationals 11. Radicals Simplifying Expressions An expression is a mathematical “phrase.” Expressions contain numbers and variables, but not an equal sign. An equation has an “equal” sign. For example: Expression: Equation: 5 + 3 5 + 3 = 8 x + 3 x + 3 = 8 (x + 4)(x – 2) (x + 4)(x – 2) = 10 x² + 5x + 6 x² + 5x + 6 = 0 x – 8 x – 8 > 3 When we simplify an expression, we work until there are as few terms as possible. This process makes the expression easier to use, (that’s why it’s called “simplify”). The first thing we want to do when simplifying an expression is to combine like terms. For example: There are many terms to look at! Let’s start with x². There Simplify: are no other terms with x² in them, so we move on. 10x x² + 10x – 6 – 5x + 4 and 5x are like terms, so we add their coefficients = x² + 5x – 6 + 4 together. 10 + (-5) = 5, so we write 5x. -6 and 4 are also = x² + 5x – 2 like terms, so we can combine them to get -2. Isn’t the simplified expression much nicer? Now you try: x² + 5x + 3x² + x³ - 5 + 3 [You should get x³ + 4x² + 5x – 2] Order of Operations PEMDAS – Please Excuse My Dear Aunt Sally, remember that from Algebra class? It tells the order in which we can complete operations when solving an equation. -
7.2 Binary Operators Closure
last edited April 19, 2016 7.2 Binary Operators A precise discussion of symmetry benefits from the development of what math- ematicians call a group, which is a special kind of set we have not yet explicitly considered. However, before we define a group and explore its properties, we reconsider several familiar sets and some of their most basic features. Over the last several sections, we have considered many di↵erent kinds of sets. We have considered sets of integers (natural numbers, even numbers, odd numbers), sets of rational numbers, sets of vertices, edges, colors, polyhedra and many others. In many of these examples – though certainly not in all of them – we are familiar with rules that tell us how to combine two elements to form another element. For example, if we are dealing with the natural numbers, we might considered the rules of addition, or the rules of multiplication, both of which tell us how to take two elements of N and combine them to give us a (possibly distinct) third element. This motivates the following definition. Definition 26. Given a set S,abinary operator ? is a rule that takes two elements a, b S and manipulates them to give us a third, not necessarily distinct, element2 a?b. Although the term binary operator might be new to us, we are already familiar with many examples. As hinted to earlier, the rule for adding two numbers to give us a third number is a binary operator on the set of integers, or on the set of rational numbers, or on the set of real numbers. -
Rules for Matrix Operations
Math 2270 - Lecture 8: Rules for Matrix Operations Dylan Zwick Fall 2012 This lecture covers section 2.4 of the textbook. 1 Matrix Basix Most of this lecture is about formalizing rules and operations that we’ve already been using in the class up to this point. So, it should be mostly a review, but a necessary one. If any of this is new to you please make sure you understand it, as it is the foundation for everything else we’ll be doing in this course! A matrix is a rectangular array of numbers, and an “m by n” matrix, also written rn x n, has rn rows and n columns. We can add two matrices if they are the same shape and size. Addition is termwise. We can also mul tiply any matrix A by a constant c, and this multiplication just multiplies every entry of A by c. For example: /2 3\ /3 5\ /5 8 (34 )+( 10 Hf \i 2) \\2 3) \\3 5 /1 2\ /3 6 3 3 ‘ = 9 12 1 I 1 2 4) \6 12 1 Moving on. Matrix multiplication is more tricky than matrix addition, because it isn’t done termwise. In fact, if two matrices have the same size and shape, it’s not necessarily true that you can multiply them. In fact, it’s only true if that shape is square. In order to multiply two matrices A and B to get AB the number of columns of A must equal the number of rows of B. So, we could not, for example, multiply a 2 x 3 matrix by a 2 x 3 matrix. -
Second-Order Algebraic Theories (Extended Abstract)
Second-Order Algebraic Theories (Extended Abstract) Marcelo Fiore and Ola Mahmoud University of Cambridge, Computer Laboratory Abstract. Fiore and Hur [10] recently introduced a conservative exten- sion of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respec- tively provide a model theory and a formal deductive system for lan- guages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categori- cal algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equiva- lences are established: at the syntactic level, that of second-order equa- tional presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic trans- lation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding. 1 Introduction Algebra started with the study of a few sample algebraic structures: groups, rings, lattices, etc. Based on these, Birkhoff [3] laid out the foundations of a general unifying theory, now known as universal algebra. Birkhoff's formalisation of the notion of algebra starts with the introduction of equational presentations. These constitute the syntactic foundations of the subject. Algebras are then the semantics or model theory, and play a crucial role in establishing the logical foundations. Indeed, Birkhoff introduced equational logic as a sound and complete formal deductive system for reasoning about algebraic structure. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
Binary Operations
4-22-2007 Binary Operations Definition. A binary operation on a set X is a function f : X × X → X. In other words, a binary operation takes a pair of elements of X and produces an element of X. It’s customary to use infix notation for binary operations. Thus, rather than write f(a, b) for the binary operation acting on elements a, b ∈ X, you write afb. Since all those letters can get confusing, it’s also customary to use certain symbols — +, ·, ∗ — for binary operations. Thus, f(a, b) becomes (say) a + b or a · b or a ∗ b. Example. Addition is a binary operation on the set Z of integers: For every pair of integers m, n, there corresponds an integer m + n. Multiplication is also a binary operation on the set Z of integers: For every pair of integers m, n, there corresponds an integer m · n. However, division is not a binary operation on the set Z of integers. For example, if I take the pair 3 (3, 0), I can’t perform the operation . A binary operation on a set must be defined for all pairs of elements 0 from the set. Likewise, a ∗ b = (a random number bigger than a or b) does not define a binary operation on Z. In this case, I don’t have a function Z × Z → Z, since the output is ambiguously defined. (Is 3 ∗ 5 equal to 6? Or is it 117?) When a binary operation occurs in mathematics, it usually has properties that make it useful in con- structing abstract structures. -
Foundations of Algebraic Theories and Higher Dimensional Categories
Foundations of Algebraic Theories and Higher Dimensional Categories Soichiro Fujii arXiv:1903.07030v1 [math.CT] 17 Mar 2019 A Doctor Thesis Submitted to the Graduate School of the University of Tokyo on December 7, 2018 in Partial Fulfillment of the Requirements for the Degree of Doctor of Information Science and Technology in Computer Science ii Abstract Universal algebra uniformly captures various algebraic structures, by expressing them as equational theories or abstract clones. The ubiquity of algebraic structures in math- ematics and related fields has given rise to several variants of universal algebra, such as symmetric operads, non-symmetric operads, generalised operads, and monads. These variants of universal algebra are called notions of algebraic theory. Although notions of algebraic theory share the basic aim of providing a background theory to describe alge- braic structures, they use various techniques to achieve this goal and, to the best of our knowledge, no general framework for notions of algebraic theory which includes all of the examples above was known. Such a framework would lead to a better understand- ing of notions of algebraic theory by revealing their essential structure, and provide a uniform way to compare different notions of algebraic theory. In the first part of this thesis, we develop a unified framework for notions of algebraic theory which includes all of the above examples. Our key observation is that each notion of algebraic theory can be identified with a monoidal category, in such a way that theories correspond to monoid objects therein. We introduce a categorical structure called metamodel, which underlies the definition of models of theories. -
Binary Operations
Binary operations 1 Binary operations The essence of algebra is to combine two things and get a third. We make this into a definition: Definition 1.1. Let X be a set. A binary operation on X is a function F : X × X ! X. However, we don't write the value of the function on a pair (a; b) as F (a; b), but rather use some intermediate symbol to denote this value, such as a + b or a · b, often simply abbreviated as ab, or a ◦ b. For the moment, we will often use a ∗ b to denote an arbitrary binary operation. Definition 1.2. A binary structure (X; ∗) is a pair consisting of a set X and a binary operation on X. Example 1.3. The examples are almost too numerous to mention. For example, using +, we have (N; +), (Z; +), (Q; +), (R; +), (C; +), as well as n vector space and matrix examples such as (R ; +) or (Mn;m(R); +). Using n subtraction, we have (Z; −), (Q; −), (R; −), (C; −), (R ; −), (Mn;m(R); −), but not (N; −). For multiplication, we have (N; ·), (Z; ·), (Q; ·), (R; ·), (C; ·). If we define ∗ ∗ ∗ Q = fa 2 Q : a 6= 0g, R = fa 2 R : a 6= 0g, C = fa 2 C : a 6= 0g, ∗ ∗ ∗ then (Q ; ·), (R ; ·), (C ; ·) are also binary structures. But, for example, ∗ (Q ; +) is not a binary structure. Likewise, (U(1); ·) and (µn; ·) are binary structures. In addition there are matrix examples: (Mn(R); ·), (GLn(R); ·), (SLn(R); ·), (On; ·), (SOn; ·). Next, there are function composition examples: for a set X,(XX ; ◦) and (SX ; ◦). -
1.3 Matrices and Matrix Operations 1.3.1 De…Nitions and Notation Matrices Are Yet Another Mathematical Object
20 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES 1.3 Matrices and Matrix Operations 1.3.1 De…nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which can be performed on them, their properties and …nally their applications. De…nition 50 (matrix) 1. A matrix is a rectangular array of numbers. in which not only the value of the number is important but also its position in the array. 2. The numbers in the array are called the entries of the matrix. 3. The size of the matrix is described by the number of its rows and columns (always in this order). An m n matrix is a matrix which has m rows and n columns. 4. The elements (or the entries) of a matrix are generally enclosed in brack- ets, double-subscripting is used to index the elements. The …rst subscript always denote the row position, the second denotes the column position. For example a11 a12 ::: a1n a21 a22 ::: a2n A = 2 ::: ::: ::: ::: 3 (1.5) 6 ::: ::: ::: ::: 7 6 7 6 am1 am2 ::: amn 7 6 7 =4 [aij] , i = 1; 2; :::; m, j =5 1; 2; :::; n (1.6) Enclosing the general element aij in square brackets is another way of representing a matrix A . 5. When m = n , the matrix is said to be a square matrix. 6. The main diagonal in a square matrix contains the elements a11; a22; a33; ::: 7. A matrix is said to be upper triangular if all its entries below the main diagonal are 0. -
Categorical Models of Type Theory
Categorical models of type theory Michael Shulman February 28, 2012 1 / 43 Theories and models Example The theory of a group asserts an identity e, products x · y and inverses x−1 for any x; y, and equalities x · (y · z) = (x · y) · z and x · e = x = e · x and x · x−1 = e. I A model of this theory (in sets) is a particularparticular group, like Z or S3. I A model in spaces is a topological group. I A model in manifolds is a Lie group. I ... 3 / 43 Group objects in categories Definition A group object in a category with finite products is an object G with morphisms e : 1 ! G, m : G × G ! G, and i : G ! G, such that the following diagrams commute. m×1 (e;1) (1;e) G × G × G / G × G / G × G o G F G FF xx 1×m m FF xx FF m xx 1 F x 1 / F# x{ x G × G m G G ! / e / G 1 GO ∆ m G × G / G × G 1×i 4 / 43 Categorical semantics Categorical semantics is a general procedure to go from 1. the theory of a group to 2. the notion of group object in a category. A group object in a category is a model of the theory of a group. Then, anything we can prove formally in the theory of a group will be valid for group objects in any category. 5 / 43 Doctrines For each kind of type theory there is a corresponding kind of structured category in which we consider models.