Principal Bundles and Connections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagonal Lifts of Metrics to Coframe Bundle
Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 44, Number 2, 2018, Pages 328{337 DIAGONAL LIFTS OF METRICS TO COFRAME BUNDLE HABIL FATTAYEV AND ARIF SALIMOV Abstract. In this paper the diagonal lift Dg of a Riemannian metric g ∗ of a manifold Mn to the coframe bundle F (Mn) is defined, Levi-Civita connection, Killing vector fields with respect to the metric Dg and also an almost paracomplex structures in the coframe bundle are studied. 1. Introduction The Riemannian metrics in the tangent bundle firstly has been investigated by the Sasaki [14]. Tondeur [16] and Sato [15] have constructed Riemannian metrics on the cotangent bundle, the construction being the analogue of the metric Sasaki for the tangent bundle. Mok [7] has defined so-called the diagonal lift of metric to the linear frame bundle, which is a Riemannian metric resembles the Sasaki metric of tangent bundle. Some properties and applications for the Riemannian metrics of the tangent, cotangent, linear frame and tensor bundles are given in [1-4,7-9,12,13]. This paper is devoted to the investigation of Riemannian metrics in the coframe bundle. In 2 we briefly describe the definitions and results that are needed later, after which the diagonal lift Dg of a Riemannian metric g is constructed in 3. The Levi-Civita connection of the metric Dg is determined in In 4. In 5 we consider Killing vector fields in coframe bundle with respect to Riemannian metric Dg. An almost paracomplex structures in the coframe bundle equipped with metric Dg are studied in 6. -
Orientability of Real Parts and Spin Structures
JP Jour. Geometry & Topology 7 (2007) 159-174 ORIENTABILITY OF REAL PARTS AND SPIN STRUCTURES SHUGUANG WANG Abstract. We establish the orientability and orientations of vector bundles that arise as the real parts of real structures by utilizing spin structures. 1. Introduction. Unlike complex algebraic varieties, real algebraic varieties are in general nonorientable, the simplest example being the real projective plane RP2. Even if they are orientable, there may not be canonical orientations. It has been an important problem to resolve the orientability and orientation issues in real algebraic geometry. In 1974, Rokhlin introduced the complex orientation for dividing real algebraic curves in RP2, which was then extended around 1982 by Viro to the so-called type-I real algebraic surfaces. A detailed historic count was presented in the lucid survey by Viro [10], where he also made some speculations on higher dimensional varieties. In this short note, we investigate the following more general situation. We take σ : X → X to be a smooth involution on a smooth manifold of an arbitrary dimension. (It is possible to consider involutions on topological manifolds with appropriate modifications.) Henceforth, we will assume that X is connected for certainty. In view of the motivation above, let us denote the fixed point set by XR, which in general is disconnected and will be assumed to be non-empty throughout the paper. Suppose E → X is a complex vector bundle and assume σ has an involutional lifting σE on E that is conjugate linear fiberwise. We call σE a real structure on E and its fixed point set ER a real part. -
Horizontal Holonomy and Foliated Manifolds Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen
Horizontal holonomy and foliated manifolds Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen To cite this version: Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen. Horizontal holonomy and foliated manifolds. Annales de l’Institut Fourier, Association des Annales de l’Institut Fourier, 2019, 69 (3), pp.1047-1086. 10.5802/aif.3265. hal-01268119 HAL Id: hal-01268119 https://hal-ensta-paris.archives-ouvertes.fr//hal-01268119 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HORIZONTAL HOLONOMY AND FOLIATED MANIFOLDS YACINE CHITOUR, ERLEND GRONG, FRED´ ERIC´ JEAN AND PETRI KOKKONEN Abstract. We introduce horizontal holonomy groups, which are groups de- fined using parallel transport only along curves tangent to a given subbundle D of the tangent bundle. We provide explicit means of computing these holo- nomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal ho- lonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure. -
Parallel Transport Along Seifert Manifolds and Fractional Monodromy Martynchuk, N.; Efstathiou, K
University of Groningen Parallel Transport along Seifert Manifolds and Fractional Monodromy Martynchuk, N.; Efstathiou, K. Published in: Communications in Mathematical Physics DOI: 10.1007/s00220-017-2988-5 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Martynchuk, N., & Efstathiou, K. (2017). Parallel Transport along Seifert Manifolds and Fractional Monodromy. Communications in Mathematical Physics, 356(2), 427-449. https://doi.org/10.1007/s00220- 017-2988-5 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Commun. Math. Phys. 356, 427–449 (2017) Communications in Digital Object Identifier (DOI) 10.1007/s00220-017-2988-5 Mathematical Physics Parallel Transport Along Seifert Manifolds and Fractional Monodromy N. Martynchuk , K. -
LECTURE 6: FIBER BUNDLES in This Section We Will Introduce The
LECTURE 6: FIBER BUNDLES In this section we will introduce the interesting class of fibrations given by fiber bundles. Fiber bundles play an important role in many geometric contexts. For example, the Grassmaniann varieties and certain fiber bundles associated to Stiefel varieties are central in the classification of vector bundles over (nice) spaces. The fact that fiber bundles are examples of Serre fibrations follows from Theorem ?? which states that being a Serre fibration is a local property. 1. Fiber bundles and principal bundles Definition 6.1. A fiber bundle with fiber F is a map p: E ! X with the following property: every ∼ −1 point x 2 X has a neighborhood U ⊆ X for which there is a homeomorphism φU : U × F = p (U) such that the following diagram commutes in which π1 : U × F ! U is the projection on the first factor: φ U × F U / p−1(U) ∼= π1 p * U t Remark 6.2. The projection X × F ! X is an example of a fiber bundle: it is called the trivial bundle over X with fiber F . By definition, a fiber bundle is a map which is `locally' homeomorphic to a trivial bundle. The homeomorphism φU in the definition is a local trivialization of the bundle, or a trivialization over U. Let us begin with an interesting subclass. A fiber bundle whose fiber F is a discrete space is (by definition) a covering projection (with fiber F ). For example, the exponential map R ! S1 is a covering projection with fiber Z. Suppose X is a space which is path-connected and locally simply connected (in fact, the weaker condition of being semi-locally simply connected would be enough for the following construction). -
Isometry Types of Frame Bundles
Pacific Journal of Mathematics ISOMETRY TYPES OF FRAME BUNDLES WOUTER VAN LIMBEEK Volume 285 No. 2 December 2016 PACIFIC JOURNAL OF MATHEMATICS Vol. 285, No. 2, 2016 dx.doi.org/10.2140/pjm.2016.285.393 ISOMETRY TYPES OF FRAME BUNDLES WOUTER VAN LIMBEEK We consider the oriented orthonormal frame bundle SO.M/ of an oriented Riemannian manifold M. The Riemannian metric on M induces a canon- ical Riemannian metric on SO.M/. We prove that for two closed oriented Riemannian n-manifolds M and N, the frame bundles SO.M/ and SO.N/ are isometric if and only if M and N are isometric, except possibly in di- mensions 3, 4, and 8. This answers a question of Benson Farb except in dimensions 3, 4, and 8. 1. Introduction 393 2. Preliminaries 396 3. High dimensional isometry groups of manifolds 400 4. Geometric characterization of the fibers of SO.M/ ! M 403 5. Proof for M with positive constant curvature 415 6. Proof of the main theorem for surfaces 422 Acknowledgements 425 References 425 1. Introduction Let M be an oriented Riemannian manifold, and let X VD SO.M/ be the oriented orthonormal frame bundle of M. The Riemannian structure g on M induces in a canonical way a Riemannian metric gSO on SO.M/. This construction was first carried out by O’Neill[1966] and independently by Mok[1978], and is very similar to Sasaki’s[1958; 1962] construction of a metric on the unit tangent bundle of M, so we will henceforth refer to gSO as the Sasaki–Mok–O’Neill metric on SO.M/. -
Crystalline Topological Phases As Defect Networks
Crystalline topological phases as defect networks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Else, Dominic V. and Ryan Thorngren. "Crystalline topological phases as defect networks." Physical Review B 99, 11 (March 2019): 115116 © 2019 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevB.99.115116 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/120966 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW B 99, 115116 (2019) Editors’ Suggestion Crystalline topological phases as defect networks Dominic V. Else Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Physics, University of California, Santa Barbara, California 93106, USA Ryan Thorngren Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel and Department of Mathematics, University of California, Berkeley, California 94720, USA (Received 10 November 2018; published 14 March 2019) A crystalline topological phase is a topological phase with spatial symmetries. In this work, we give a very general physical picture of such phases: A topological phase with spatial symmetry G (with internal symmetry Gint G) is described by a defect network,aG-symmetric network of defects in a topological phase with internal symmetry Gint. The defect network picture works both for symmetry-protected topological (SPT) and symmetry-enriched topological (SET) phases, in systems of either bosons or fermions. -
Elementary Differential Geometry
ELEMENTARY DIFFERENTIAL GEOMETRY YONG-GEUN OH { Based on the lecture note of Math 621-2020 in POSTECH { Contents Part 1. Riemannian Geometry 2 1. Parallelism and Ehresman connection 2 2. Affine connections on vector bundles 4 2.1. Local expression of covariant derivatives 6 2.2. Affine connection recovers Ehresmann connection 7 2.3. Curvature 9 2.4. Metrics and Euclidean connections 9 3. Riemannian metrics and Levi-Civita connection 10 3.1. Examples of Riemannian manifolds 12 3.2. Covariant derivative along the curve 13 4. Riemann curvature tensor 15 5. Raising and lowering indices and contractions 17 6. Geodesics and exponential maps 19 7. First variation of arc-length 22 8. Geodesic normal coordinates and geodesic balls 25 9. Hopf-Rinow Theorem 31 10. Classification of constant curvature surfaces 33 11. Second variation of energy 34 Part 2. Symplectic Geometry 39 12. Geometry of cotangent bundles 39 13. Poisson manifolds and Schouten-Nijenhuis bracket 42 13.1. Poisson tensor and Jacobi identity 43 13.2. Lie-Poisson space 44 14. Symplectic forms and the Jacobi identity 45 15. Proof of Darboux' Theorem 47 15.1. Symplectic linear algebra 47 15.2. Moser's deformation method 48 16. Hamiltonian vector fields and diffeomorhpisms 50 17. Autonomous Hamiltonians and conservation law 53 18. Completely integrable systems and action-angle variables 55 18.1. Construction of angle coordinates 56 18.2. Construction of action coordinates 57 18.3. Underlying geometry of the Hamilton-Jacobi method 61 19. Lie groups and Lie algebras 62 1 2 YONG-GEUN OH 20. Group actions and adjoint representations 67 21. -
Math 704: Part 1: Principal Bundles and Connections
MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS WEIMIN CHEN Contents 1. Lie Groups 1 2. Principal Bundles 3 3. Connections and curvature 6 4. Covariant derivatives 12 References 13 1. Lie Groups A Lie group G is a smooth manifold such that the multiplication map G × G ! G, (g; h) 7! gh, and the inverse map G ! G, g 7! g−1, are smooth maps. A Lie subgroup H of G is a subgroup of G which is at the same time an embedded submanifold. A Lie group homomorphism is a group homomorphism which is a smooth map between the Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set of left-invariant vector fields on G, i.e., Lie(G) = fX 2 X (G)j(Lg)∗X = Xg, where Lg : G ! G is the left translation Lg(h) = gh. As a vector space, Lie(G) is naturally identified with the tangent space TeG via X 7! X(e). A Lie group homomorphism naturally induces a Lie algebra homomorphism between the associated Lie algebras. Finally, the universal cover of a connected Lie group is naturally a Lie group, which is in one to one correspondence with the corresponding Lie algebras. Example 1.1. Here are some important Lie groups in geometry and topology. • GL(n; R), GL(n; C), where GL(n; C) can be naturally identified as a Lie sub- group of GL(2n; R). • SL(n; R), O(n), SO(n) = O(n) \ SL(n; R), Lie subgroups of GL(n; R). -
Notes on Principal Bundles and Classifying Spaces
Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG]. -
Complete Connections on Fiber Bundles
Complete connections on fiber bundles Matias del Hoyo IMPA, Rio de Janeiro, Brazil. Abstract Every smooth fiber bundle admits a complete (Ehresmann) connection. This result appears in several references, with a proof on which we have found a gap, that does not seem possible to remedy. In this note we provide a definite proof for this fact, explain the problem with the previous one, and illustrate with examples. We also establish a version of the theorem involving Riemannian submersions. 1 Introduction: A rather tricky exercise An (Ehresmann) connection on a submersion p : E → B is a smooth distribution H ⊂ T E that is complementary to the kernel of the differential, namely T E = H ⊕ ker dp. The distributions H and ker dp are called horizontal and vertical, respectively, and a curve on E is called horizontal (resp. vertical) if its speed only takes values in H (resp. ker dp). Every submersion admits a connection: we can take for instance a Riemannian metric ηE on E and set H as the distribution orthogonal to the fibers. Given p : E → B a submersion and H ⊂ T E a connection, a smooth curve γ : I → B, t0 ∈ I, locally defines a horizontal lift γ˜e : J → E, t0 ∈ J ⊂ I,γ ˜e(t0)= e, for e an arbitrary point in the fiber. This lift is unique if we require J to be maximal, and depends smoothly on e. The connection H is said to be complete if for every γ its horizontal lifts can be defined in the whole domain. In that case, a curve γ induces diffeomorphisms between the fibers by parallel transport. -
Smoothing Maps Into Algebraic Sets and Spaces of Flat Connections
SMOOTHING MAPS INTO ALGEBRAIC SETS AND SPACES OF FLAT CONNECTIONS THOMAS BAIRD AND DANIEL A. RAMRAS n Abstract. Let X ⊂ R be a real algebraic set and M a smooth, closed manifold. We show that all continuous maps M ! X are homotopic (in X) to C1 maps. We apply this result to study characteristic classes of vector bundles associated to continuous families of complex group representations, and we establish lower bounds on the ranks of the homotopy groups of spaces of flat connections over aspherical manifolds. 1. Introduction The first goal of this paper is to prove the following result about the differential topology of algebraic sets. Theorem 1.1 (Section2) . Let X ⊂ Rn be a (possibly singular) real algebraic set, and let f : M ! X be a continuous map from a smooth, closed manifold M. Then there exists a map g : M ! X, and a homotopy H : M × I ! X connecting f and g g, such that the composite M ! X,! Rn is C1. The problem of smoothing maps into algebraic sets seems natural, but we have not found mention of it in the literature. We consulted several experts in real algebraic geometry; some expected our result to hold, and some did not. Our proof proceeds by embedding X as the singular set of an irreducible, quasi- projective variety Y and using a resolution of singularities Ye ! Y for which the inverse image of X is a divisor with normal crossing singularities. Basic facts about neighborhoods of algebraic sets then reduce the problem to the case of normal crossing divisors, which can be handled by differential-geometric means.