R-Process Nucleosynthesis in Supernovae the Heaviest Elements Are Made Only in Cataclysmic Events

Total Page:16

File Type:pdf, Size:1020Kb

R-Process Nucleosynthesis in Supernovae the Heaviest Elements Are Made Only in Cataclysmic Events R-Process Nucleosynthesis in Supernovae The heaviest elements are made only in cataclysmic events. most inevitably followed by beta decay, and the path to increasingly Finding out whether supernovae are cataclysmic enough heavy nuclear species charted by suc- requires extensive astronomical observation and cessive n captures remains close to the sophisticated computer modeling. valley of beta stability in figure 1. The figure shows how beta-decay lifetimes decrease for a given Z as the increas- John J. Cowan and Friedrich-Karl Thielemann ing neutron number N carries a nu- cleus away from the valley of stability. Isotopes involved in s-process nu- lmost all of the hydrogen and helium in the cosmos, cleosynthesis are, in general, sufficiently long lived to be Aalong with some of the lithium, was created in the first studied in the laboratory. That is not so for the r-process, three minutes after the Big Bang. Two more light ele- in which a sufficient flux of neutrons makes tn much ments, beryllium and boron, are synthesized in interstel- shorter than tb. In that case, n captures will proceed into lar space by collisions between cosmic rays and gas nuclei. the very neutron-rich and unstable regions far from the All of the other elements in nature are formed by nuclear beta-stable valley. Such high neutron fluxes are only tran- reactions inside stars. sient—coming, for example, from a supernova explosion. Over the 14-billion-year history of the universe, ele- Once the flux is exhausted, the unstable nuclei produced ments made in stars have been ejected back into space to by the r-process will beta-decay back to the valley of sta- be incorporated into new stars and planets. Thus there is bility to form the so-called stable r-process nuclei. Because an intricate relationship between the life cycles of stars the r-process path (shown by the magenta line in figure 1) and the nucleosynthesis of the elements. Fusion reactions wanders through regions so neutron-rich and so far from inside stellar cores are exothermic. They release the en- stability, experimental measurement of the properties of ergy that powers stars and supports them against gravi- nuclei along the way is very difficult. tational contraction. During most of a star’s life, the prin- The r-process and the s-process contribute roughly cipal fusion process is the burning of H to form He. equally to the nucleosynthesis of heavy isotopes. The ele- But binding energy per nucleon increases with nu- ments that compose the materials of the solar system con- clear mass only up to iron-56, the most tightly bound of all tain admixtures from both—but, interestingly, nothing nuclei. The production of any heavier nucleus by direct fu- that would appear to be from any astrophysical process in- sion is endothermic. Another impediment to the produc- termediate between the two. Some of the n-capture ele- tion of heavy nuclei in stars is the growth of the Coulomb ments are produced by both processes, but some come al- barrier with increasing proton number Z. At sufficiently most exclusively from one process or the other. All the high Z, the Coulomb barrier prevents all nuclear reactions n-capture elements are rare by the standards of the lighter induced by charged particles at stellar temperatures. elements. But those you find at the jeweler’s—gold, plat- Therefore, the isotopes of elements beyond Fe are almost inum, and silver—originate almost entirely in the exclusively formed in neutron-capture processes. The r-process. products are referred to as n-capture elements. The basic ideas of how the r-process operates have been known for some time. But the specific physical con- The two main n-capture processes for astrophysical ditions and nuclear properties required for the process, nucleosynthesis were originally identified in 1957 in pio- and particularly its astrophysical sites, have not been un- neering work by Margaret and Geoffrey Burbidge, William ambiguously identified.2,3 The s-process is much better Fowler, Fred Hoyle, and Alistair Cameron.1 They are called known. Its primary sites are low- or intermediate-mass the slow (s) and rapid (r) n-capture processes. After a nu- stars (from about 0.8 to 8 solar masses [M0]) with long evo- cleus has captured a neutron to become a heavier nucleus, lutionary time scales measured in billions of years.4 the time scale t for it to capture an additional neutron is n By contrast, stars heavier than about 8 M live only a either slow or rapid on the competing time scale t for it 0 b few million years. They are thought to end up as core-col- to undergo beta decay. Whereas tb, the mean beta-decay lapse (type II) supernovae when their thermonuclear fusion lifetime, depends only on the nuclear species, tn depends fuel is exhausted. The products of the s-process take longer crucially on the ambient neutron flux. to be produced and ejected into the galaxy. That is, they ar- When a stable nucleus has captured enough neutrons rive later in galactic history than the r-process elements.5 to leave the valley of stability, it becomes unstable. Even- The density of free neutrons required for the r-process tually it undergoes beta decay, which transforms a neutron points to explosive environments. Supernovae have long into a proton and thus increases the nucleus’s Z by 1 with- been the prime suspects. The earliest studies1 suggested out changing its mass number A. In the s-process, tn is that the edge of the collapsing core of a type II supernova, much longer than tb. Therefore, a single n capture is al- ejecting a rich flux of neutrons, might be the site of the r-process. But many difficulties arise in actually confirm- John Cowan is a professor of physics and astronomy at the Uni- ing the supernova connection. Not enough is known about versity of Oklahoma in Norman. Friedrich-Karl Thielemann is a professor of physics at the University of Basel in Switzerland. the detailed physics—for example, the explosion mecha- nism, the role of neutrino interactions in the explosion, the © 2004 American Institute of Physics, S-0031-9228-0410-020-3 October 2004 Physics Today 47 120 neutron density. The maxi- mum occurs at a specific neu- tron separation energy Sn, the energy released in a neu- 100 tron capture. At a given temperature and neutron density, the abundance- maximum value of S is the Z n 80 same for all isotope chains, irrespective of Z. The r-process path in the NZ- plane is then determined; it 60 connects the maximum-abun- log(tb /s) dance isotopes of all the iso- 1.0 topic chains. Beta decay PROTON NUMBER 40 0.5 (Z, A) O (Z+1, A)+e– + n 0.0 e –0.5 transfers nuclei from one iso- Beta decay –1.0 topic chain to the next and de- 20 –1.5 termines the speed with –2.0 which heavy nuclei are Neutron capture –2.5 formed. The thin magenta line 0 traversing the nuclide chart of 0 20 40 60 80 100 120 140 160 figure 1 illustrates an r- NEUTRON NUMBER N process path with Sn between 2 and 3 MeV. Such a path re- Figure 1. The stable and neutron-rich unstable nuclides.3 Isotopes stable against beta quires a synthesis time on the decay, indicated by black and magenta boxes, form the valley of stability that runs along order of seconds to form the the top edge of the band. (Proton-rich isotopes on the valley’s other side are not shown.) heaviest elements, such as thorium, uranium, and pluto- Colored bands indicate decreasing measured or predicted lifetimes tb with increasing dis- tance from the valley. The jagged black line is the limit of laboratory information. The nium. During an r-process jagged magenta line shows a typical path of rapid (r-process) neutron captures. Such paths event, temperature and neu- tend to turn vertical at the double vertical lines that mark neutron numbers corresponding tron density—and therefore to closed neutron shells. (The horizontal double lines indicate closed proton shells.) A nu- the path’s Sn—change with cleus on an r-process path eventually beta decays up to the valley to become one of the r- time. Thus, very unstable nu- process stable nuclei indicated by the magenta squares. (Courtesy of Peter Möller.) clei with neutron separation energies ranging from about 4 MeV all the way down to zero treatment of hydrodynamic instabilities in three-dimen- can be involved in the r-process. The condition Sn = 0 defines sional simulations, and the equation of state of ultradense the so-called neutron drip line, at which nuclei become un- matter—required to create realistic supernova models stable to neutron emission. that actually yield explosions. Furthermore, imprecise nu- When the intense neutron flux ends, a nucleus on the clear data are lacking on the very unstable nuclei involved r-process path will beta decay back up to the valley of sta- in the r-process. bility and produce one of the stable nuclei indicated by the The situation has, however, been improving rapidly. magenta boxes in the figure. For example, the stable r- There are new high-resolution abundance observations of process nucleus platinum-198 is originally formed as an n-capture elements in halo stars that surround the galac- unstable lower-Z nucleus of the same A but with more neu- 198 tic disk. Models of core-collapse supernovae are becoming trons. A sequence of beta decays then converts it to 78Pt.
Recommended publications
  • Computing ATOMIC NUCLEI
    UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes.
    [Show full text]
  • Hetc-3Step Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies Between 20 Mev and 5 Gev
    JAERI-Research 96-040 JAERI-Research—96-040 JP9609132 JP9609132 HETC-3STEP CALCULATIONS OF PROTON INDUCED NUCLIDE PRODUCTION CROSS SECTIONS AT INCIDENT ENERGIES BETWEEN 20 MEV AND 5 GEV August 1996 Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHI* Japan Atomic Energy Research Institute 2 G 1 0 1 (T319-11 l This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan. © Japan Atomic Energy Research Institute, 1996 JAERI-Research 96-040 HETC-3STEP Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies between 20 MeV and 5 GeV Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHP* Department of Reactor Engineering Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received July 1, 1996) For the OECD/NEA code intercomparison, nuclide production cross sections of l60, 27A1, nalFe, 59Co, natZr and 197Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for natZr and 197Au.
    [Show full text]
  • An Octad for Darmstadtium and Excitement for Copernicium
    SYNOPSIS An Octad for Darmstadtium and Excitement for Copernicium The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.” By Katherine Wright holy grail of nuclear physics is to understand the stability uncover its position. of the periodic table’s heaviest elements. The problem Ais, these elements only exist in the lab and are hard to The team made their discoveries while studying the decay of make. In an experiment at the GSI Helmholtz Center for Heavy isotopes of flerovium, which they created by hitting a plutonium Ion Research in Germany, researchers have now observed a target with calcium ions. In their experiments, flerovium-288 previously unseen isotope of the heavy element darmstadtium (Z = 114, N = 174) decayed first into copernicium-284 and measured the decay of an excited state of an isotope of (Z = 112, N = 172) and then into darmstadtium-280 (Z = 110, another heavy element, copernicium [1]. The results could N = 170), a previously unseen isotope. They also measured an provide “anchor points” for theories that predict the stability of excited state of copernicium-282, another isotope of these heavy elements, says Anton Såmark-Roth, of Lund copernicium. Copernicium-282 is interesting because it University in Sweden, who helped conduct the experiments. contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a A nuclide’s stability depends on how many protons (Z) and superheavy even-even nucleus, Såmark-Roth says.
    [Show full text]
  • The R-Process Nucleosynthesis and Related Challenges
    EPJ Web of Conferences 165, 01025 (2017) DOI: 10.1051/epjconf/201716501025 NPA8 2017 The r-process nucleosynthesis and related challenges Stephane Goriely1,, Andreas Bauswein2, Hans-Thomas Janka3, Oliver Just4, and Else Pllumbi3 1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium 2Heidelberger Institut fr¨ Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 4Astrophysical Big Bang Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Abstract. The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A > 90 up to actinides. The corresponding abundance distribution is found to reproduce the∼ solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our under- standing of the composition of the ejected matter.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Electron Capture in Stars
    Electron capture in stars K Langanke1;2, G Mart´ınez-Pinedo1;2;3 and R.G.T. Zegers4;5;6 1GSI Helmholtzzentrum f¨urSchwerionenforschung, D-64291 Darmstadt, Germany 2Institut f¨urKernphysik (Theoriezentrum), Department of Physics, Technische Universit¨atDarmstadt, D-64298 Darmstadt, Germany 3Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨ur Schwerionenforschung, D-64291 Darmstadt, Germany 4 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA 5 Joint Institute for Nuclear Astrophysics: Center for the Evolution of the Elements, Michigan State University, East Lansing, Michigan 48824, USA 6 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA E-mail: [email protected], [email protected], [email protected] Abstract. Electron captures on nuclei play an essential role for the dynamics of several astrophysical objects, including core-collapse and thermonuclear supernovae, the crust of accreting neutron stars in binary systems and the final core evolution of intermediate mass stars. In these astrophysical objects, the capture occurs at finite temperatures and at densities at which the electrons form a degenerate relativistic electron gas. The capture rates can be derived in perturbation theory where allowed nuclear transitions (Gamow-Teller transitions) dominate, except at the higher temperatures achieved in core-collapse supernovae where also forbidden transitions contribute significantly to the rates. There has been decisive progress in recent years in measuring Gamow-Teller (GT) strength distributions using novel experimental techniques based on charge-exchange reactions. These measurements provide not only data for the GT distributions of ground states for many relevant nuclei, but also serve as valuable constraints for nuclear models which are needed to derive the capture rates for the arXiv:2009.01750v1 [nucl-th] 3 Sep 2020 many nuclei, for which no data exist yet.
    [Show full text]
  • Star Factories: Nuclear Fusion and the Creation of the Elements
    Star Factories: Nuclear Fusion and the Creation of the Elements Science In the River City workshop 3/22/11 Chris Taylor Department of Physics and Astronomy Sacramento State Introductions! Science Content Standards, Grades 9 - 12 Earth Sciences: Earth's Place in the Universe 1.e ''Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium.'' 2.c '' Students know the evidence indicating that all elements with an atomic number greater than that of lithium have been formed by nuclear fusion in stars.'' Three topics tonight: 1) how do we know all the heavier elements are made in stars? (Big Bang theory) 2) How do stars make elements as heavy as or less heavy than iron? (Stellar nucleosynthesis) 3) How do stars make elements heavier than iron? (Supernovae) Big Bang Nucleosynthesis The Big Bang theory predicts that when the universe first formed, the only matter that existed was hydrogen, helium, and very tiny amounts of lithium. If this is true, then all other elements must have been created in stars. Astronomers use spectroscopy to examine the light emitted by distant stars to determine what kinds of atoms are in them. We've learned that most stars contain nearly every element in the periodic table. The spectrum of the Sun In order to measure measure what kinds of atoms were around in the earliest days of the Universe, we look for stars that were made out of fresh, primordial gas. The closest we can get to this is looking at dwarf galaxies, which show extremely low levels of elements heavier than helium.
    [Show full text]
  • 1 PROF. CHHANDA SAMANTA, Phd PAPERS in PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, Bonding A
    PROF. CHHANDA SAMANTA, PhD PAPERS IN PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, bonding and charge symmetry breaking in Λ- hypernuclei”, arXiv:1710.08036v2 [nucl-th] (to be published) 2. T. A. Schmitt, C. Samanta, “A-dependence of -bond and charge symmetry energies”, EPJ Web Conf. 182, 03012 (2018) 3. Chhanda Samanta, Superheavy Nuclei to Hypernuclei: A Tribute to Walter Greiner, EPJ Web Conf. 182, 02107 (2018) 4. C. Samanta with X Qiu, L Tang, C Chen, et al., “Direct measurements of the lifetime of medium-heavy hypernuclei”, Nucl. Phys. A973, 116 (2018); arXiv:1212.1133 [nucl-ex] 5. C. Samanta with with S. Mukhopadhyay, D. Atta, K. Imam, D. N. Basu, “Static and rotating hadronic stars mixed with self-interacting fermionic Asymmetric Dark Matter”, The European Physical Journal C.77:440 (2017); arXiv:1612.07093v1 6. C. Samanta with R. Honda, M. Agnello, J. K. Ahn et al, “Missing-mass spectroscopy with 6 − + 6 the Li(π ,K )X reaction to search for ΛH”, Phys. Rev. C 96, 014005 (2017); arXiv:1703.00623v2 [nucl-ex] 7. C. Samanta with T. Gogami, C. Chen, D. Kawama et al., “Spectroscopy of the neutron-rich 7 hypernucleus He from electron scattering”, Phys. Rev. C94, 021302(R) (2016); arXiv:1606.09157 8. C. Samanta with T. Gogami, C. Chen, D. Kawama,et al., ”High Resolution Spectroscopic 10 Study of ΛBe”, Phys. Rev. C93, 034314(2016); arXiv:1511.04801v1[nucl-ex] 9. C. Samanta with L. Tang, C. Chen, T. Gogami et al., “The experiments with the High 12 Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ΛB hypernuclei, Phys.
    [Show full text]
  • Current Status of Equation of State in Nuclear Matter and Neutron Stars
    Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ???
    [Show full text]
  • Professor Margaret Burbidge Obituary Trailblazing Astronomer Hailed As ‘Lady Stardust’ Who Became the First Woman Director of the Royal Greenwich Observatory
    OBITUARY Professor Margaret Burbidge obituary Trailblazing astronomer hailed as ‘Lady Stardust’ who became the first woman director of the Royal Greenwich Observatory Wednesday April 08 2020, 12.01am, The Times Margaret Burbidge showed how heavier elements are produced from lighter ones in stars AMERICAN INSTITUTE OF PHYSICS/SCIENCE PHOTO LIBRARY In August 1944 Margaret Burbidge, then a young astronomer driven by a thirst for knowledge that would later define her, was studying for her PhD thesis. Her subject was a star called Gamma Cassiopeiae and she was not going to allow the Second World War to stand in her way. Each evening she would travel from the family home close to Hampstead Heath to the University of London Observatory at Mill Hill Park and open up the telescope named after its donor, JG Wilson. She would then spend hours sitting in the cramped and cold space below it, alone with her view of the stars. At that time the Luftwaffe was sending doodlebug flying bombs across the Channel to terrorise the capital but Burbidge ignored the danger. On the night of August 3, her log notes that shortly before 10pm, just after she had opened up the telescope, a flying bomb exploded so close to the observatory that the reverberations from the impact shifted the star out of the telescope’s field of vision. Undeterred she started her observations again a few minutes later only for another doodlebug to explode, this time farther away. Although the star was temporarily lost again she quickly recovered it and completed her observations. “Those nights, standing or sitting on the ladder in the dome of the Wilson reflector .
    [Show full text]
  • A Magnetar Model for the Hydrogen-Rich Super-Luminous Supernova Iptf14hls Luc Dessart
    A&A 610, L10 (2018) https://doi.org/10.1051/0004-6361/201732402 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls Luc Dessart Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS, UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile e-mail: [email protected] Received 2 December 2017 / Accepted 14 January 2018 ABSTRACT Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler- broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and 13 field strength of 7 × 10 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M , kinetic 51 56 energy of 1:32 × 10 erg, 0.077 M of Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of −18 mag in the R band, the blue optical color, and the broad H I lines for 600 d.
    [Show full text]
  • Nucleosynthesis
    Nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons. The first nuclei were formed about three minutes after the Big Bang, through the process called Big Bang nucleosynthesis. Seventeen minutes later the universe had cooled to a point at which these processes ended, so only the fastest and simplest reactions occurred, leaving our universe containing about 75% hydrogen, 24% helium, and traces of other elements such aslithium and the hydrogen isotope deuterium. The universe still has approximately the same composition today. Heavier nuclei were created from these, by several processes. Stars formed, and began to fuse light elements to heavier ones in their cores, giving off energy in the process, known as stellar nucleosynthesis. Fusion processes create many of the lighter elements up to and including iron and nickel, and these elements are ejected into space (the interstellar medium) when smaller stars shed their outer envelopes and become smaller stars known as white dwarfs. The remains of their ejected mass form theplanetary nebulae observable throughout our galaxy. Supernova nucleosynthesis within exploding stars by fusing carbon and oxygen is responsible for the abundances of elements between magnesium (atomic number 12) and nickel (atomic number 28).[1] Supernova nucleosynthesis is also thought to be responsible for the creation of rarer elements heavier than iron and nickel, in the last few seconds of a type II supernova event. The synthesis of these heavier elements absorbs energy (endothermic process) as they are created, from the energy produced during the supernova explosion. Some of those elements are created from the absorption of multiple neutrons (the r-process) in the period of a few seconds during the explosion.
    [Show full text]