Dysfunction of CD19+Cd24hicd27+ B Regulatory Cells in Patients With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ligands for Human Igg and Their Effector Functions
antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases. -
B Cell Checkpoints in Autoimmune Rheumatic Diseases
REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases -
The Adaptive Immune Response B-Cells
The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive Plasma cells Naive ADAPTIVE IMMUNITY The adaptive immune system consists of lymphocytes and their products, including antibodies. The receptors of lymphocytes are much more diverse than those of the innate immune system, but lymphocytes are not inherently specific for microbes, and they are capable of recognizing a vast array of foreign substances. http://www.pathologystudent.com/wp- content/uploads/2010/07/normal-lymphs.jpg There are two types of adaptive Immunity Humoral immunity: mediated by B lymphocytes and their secreted products, antibodies (also called immunoglobulins, Ig) that protects against extracellular microbes and their toxins. Cellular immunity: mediated by T lymphocytes and is responsible for defense against intracellular microbes. content/uploads/2011/05/adoptive_immunity.gif - sheng.com/wp - http://yang Types of Adaptive Immune Reponses Lymphocytes Although lymphocytes appear morphologically unimpressive and similar to one another, they are actually remarkably heterogeneous and specialized in molecular properties and functions. Lymphocytes and other cells involved in immune responses are not fixed in particular tissues (as are cells in most of the organs of the body) but are capable of migrating among lymphoid and other tissues and the vascular and lymphatic circulations. This feature permits lymphocytes to home to any site of infection. In lymphoid organs, different classes of lymphocytes are anatomically segregated in such a way that they interact with one another only when stimulated to do so by encounter with antigens and other stimuli. -
Structural Features of Human Immunoglobulin G That Determine Isotype-Specitic Differences in Complement Activation by Mi-Hua Tao,* Richard I.F
Structural Features of Human Immunoglobulin G that Determine Isotype-specitic Differences in Complement Activation By Mi-Hua Tao,* Richard I.F. Smith,* and Sherie L. Morrison*r From the "Department of Microbiology and Molecular Genetics and IThe Molecular Biology Institute, University of California, Los Angeles, California 90024 Summary Although very similar in sequence, the four subclasses of human immunoglobulin G (IgG) differ markedly in their ability to activate complement. Glu318-Lys320-Lys322 has been identified as Downloaded from http://rupress.org/jem/article-pdf/178/2/661/1268014/661.pdf by guest on 30 September 2021 a key binding motif for the first component of complement, Clq, and is present in all isotypes of Ig capable of activating complement. This motif, however, is present in all subclasses of human IgG, including those that show little (IgG2) or even no (IgG4) complement activity. Using point mutants of chimeric antibodies, we have identified specificresidues responsible for the differing ability of the IgG subclasses to fix complement. In particular, we show that Ser at position 331 in 3/4 is critical for determining the inability of that isotype to bind Clq and activate complement. Additionally, we provide further evidence that levels of Clq binding do not necessarily correlate with levels of complement activity, and that Clq binding alone is not sufficient for complement activation. he classical pathway of complement activation is initi- tivation ability and an IgG4 with the hinge of IgG3, although T ated by immune complexes composed of antigen and ei- as flexible as wild-type IgG3, displays no detectable comple- ther IgM or IgG Abs. -
Autoantibody Development Under Treatment with Immune-Checkpoint Inhibitors Emma C
Published OnlineFirst November 13, 2018; DOI: 10.1158/2326-6066.CIR-18-0245 Cancer Immunology Miniature Cancer Immunology Research Autoantibody Development under Treatment with Immune-Checkpoint Inhibitors Emma C. de Moel1, Elisa A. Rozeman2, Ellen H. Kapiteijn3, Els M.E. Verdegaal3, Annette Grummels4,JaapA.Bakker4, Tom W.J. Huizinga1, John B. Haanen2,3, Rene E.M. Toes1, and Diane van der Woude1 Abstract Immune-checkpoint inhibitors (ICIs) activate the and any irAEs [OR, 2.92; 95% confidence interval (CI) immune system to assault cancer cells in a manner that is 0.85–10.01]. Patients with antithyroid antibodies after ipi- not antigen specific. We hypothesized that tolerance may limumab had significantly more thyroid dysfunction under also be broken to autoantigens, resulting in autoantibody subsequent anti–PD-1 therapy: 7/11 (54.6%) patients with formation, which could be associated with immune-related antithyroid antibodies after ipilimumab developed thyroid adverse events (irAEs) and antitumor efficacy. Twenty-three dysfunction under anti–PD1 versus 7/49 (14.3%) patients common clinical autoantibodies in pre- and posttreatment without antibodies (OR, 9.96; 95% CI, 1.94–51.1). Patients sera from 133 ipilimumab-treated melanoma patients were who developed autoantibodies showed a trend for better determined, and their development linked to the occurrence survival (HR for all-cause death: 0.66; 95% CI, 0.34–1.26) of irAEs, best overall response, and survival. Autoantibodies and therapy response (OR, 2.64; 95% CI, 0.85–8.16). We developed in 19.2% (19/99) of patients who were autoan- conclude that autoantibodies develop under ipilimumab tibody-negative pretreatment. -
Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear. -
Tests for Autoimmune Diseases Test Codes 249, 16814, 19946
Tests for Autoimmune Diseases Test Codes 249, 16814, 19946 Frequently Asked Questions Panel components may be ordered separately. Please see the Quest Diagnostics Test Center for ordering information. 1. Q: What are autoimmune diseases? A: “Autoimmune disease” refers to a diverse group of disorders that involve almost every one of the body’s organs and systems. It encompasses diseases of the nervous, gastrointestinal, and endocrine systems, as well as skin and other connective tissues, eyes, blood, and blood vessels. In all of these autoimmune diseases, the underlying problem is “autoimmunity”—the body’s immune system becomes misdirected and attacks the very organs it was designed to protect. 2. Q: Why are autoimmune diseases challenging to diagnose? A: Diagnosis is challenging for several reasons: 1. Patients initially present with nonspecific symptoms such as fatigue, joint and muscle pain, fever, and/or weight change. 2. Symptoms often flare and remit. 3. Patients frequently have more than 1 autoimmune disease. According to a survey by the Autoimmune Diseases Association, it takes up to 4.6 years and nearly 5 doctors for a patient to receive a proper autoimmune disease diagnosis.1 3. Q: How common are autoimmune diseases? A: At least 30 million Americans suffer from 1 or more of the 80 plus autoimmune diseases. On average, autoimmune diseases strike three times more women than men. Certain ones have an even higher female:male ratio. Autoimmune diseases are one of the top 10 leading causes of death among women age 65 and under2 and represent the fourth-largest cause of disability among women in the United States.3 Women’s enhanced immune system increases resistance to infection, but also puts them at greater risk of developing autoimmune disease than men. -
Clinically-Relevant Monoclonal Antibodies
ANTIBODIES ISOTYPE FAMILIES Switch natural isotypes Clinically relevant monoclonal antibodies Fine-tuned effector functions Up to 14 different native and engineered isotypes InvivoGen provides a series of clinically relevant antibodies in their original Antibodies against format or with different immunoglobulin isotypes. Our engineered antibodies various targets are designed to adjust their effector functions, including half-life, complement- Anti-hCD20 Anti-hPD1 dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity Anti-hCTLA4 Anti-hPD-L1 (ADCC) and antibody-dependent cell phagocytosis (ADCP). The variety of Anti-hEGFR Anti-hTNF-α the immunoglobulin constant regions helps you determine the most suitable Anti-HER2 Anti-hVEGF isotype for your application. WWW.INVIVOGEN.COM/ANTIBODY-ISOTYPES Description Monoclonal antibodies (mAbs) have become a major tool in the treatment of cancer and auto-immune diseases. The efficacy of antibodies is governed by their bifunctional nature. On the one hand, the variable domain of the immunoglobulin, within the fragment of antigen binding (Fab), confers antigen specificity function. On the other hand, the fragment crystallizable region (Fc) in the constant domain of the immunoglobulin triggers antibody-mediated effector functions by engaging a variety of Fc receptors. Antibody isotype switching is a biological process enabling changes in the ability of the antibody to interact with different Fc receptors and thus, reduce or potentiate effector functions. InvivoGen’s antibody isotype families consist of clinically relevant mAbs comprising the same variable domain and the constant domain of various isotypes, therefore differing in their suitability for a given application. Native and engineered isotypes Features of our antibody isotype families • Native isotype antibodies Physiological native isotypes trigger various combinations of Specificities Fragment antigen effector functions that are summarized in the table below. -
Understanding the Immune System: How It Works
Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them. -
The Importance of Using an Isotype Control
The Importance of Using an Isotype Control White Paper What are Isotype Controls? Isotype control antibodies are essential negative controls for in vivo studies and can play an important role in standard immunoassays, such as flow cytometry and immunohistochemistry (IHC). They match the characteristics of the assay’s primary antibody (e.g. isotype, clonality), but having been raised against antigens known not to be present in common preclinical species (HEL, KLH, etc.), have no target cell/antigen specificity. This provides researchers with a suitable negative control to accurately discriminate between an antibody binding in an antigen-dependent specific manner from non-antigen dependent mAb binding due to Fc receptors (FcR) or other proteins. In the simplest terms, isotype controls help distinguish non- specific background signal from specific antibody signal. Monoclonal, subclass specific (i.e. lambda vs. kappa immunoglobulin) isotype controls provide an especially reliable method that effectively differentiates between specificity versus background in a range of drug development assays. Why is it Important to Use Isotype Controls? Structurally, all antibodies are very similar, with only a small hypervariable region determining antigen specific binding. The rest of the antibody molecule consists of Using an the constant region, where sequences are often shared by antibodies of the same “appropriate isotype. isotype control allows the true The constant regions help determine antibody mechanism of action, by coordinating determination binding to the FcR present on many cell types. FcRs are expressed on a number of different cell types in the immune system, including (but not limited to): of specific vs non-antigen • B lymphocytes specific • follicular dendritic cells binding • natural killer cells across a range • macrophages • neutrophils of in vivo “ studies and • eosinophils Immunoassays • basophils • human platelets • mast cells. -
Systemic Lupus Erythematosus T Cell Studies in a Peptide-Induced Model Of
T Cell Studies in a Peptide-Induced Model of Systemic Lupus Erythematosus Magi Khalil, Kayo Inaba, Ralph Steinman, Jeffrey Ravetch and Betty Diamond This information is current as of September 25, 2021. J Immunol 2001; 166:1667-1674; ; doi: 10.4049/jimmunol.166.3.1667 http://www.jimmunol.org/content/166/3/1667 Downloaded from References This article cites 73 articles, 40 of which you can access for free at: http://www.jimmunol.org/content/166/3/1667.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. T Cell Studies in a Peptide-Induced Model of Systemic Lupus Erythematosus Magi Khalil,* Kayo Inaba,‡ Ralph Steinman,‡ Jeffrey Ravetch,‡ and Betty Diamond1† We have previously reported that immunization with a peptide mimetope of dsDNA on a branched polylysine backbone (DWEYSVWLSN-MAP) induces a systemic lupus erythematosus-like syndrome in the nonautoimmune BALB/c mouse strain. -
A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus Pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C
A novel superantigen isolated from pathogenic strains of Streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C. J A Mollick, … , D Grossman, R R Rich J Clin Invest. 1993;92(2):710-719. https://doi.org/10.1172/JCI116641. Research Article Streptococcus pyogenes (group A Streptococcus) has re-emerged in recent years as a cause of severe human disease. Because extracellular products are involved in streptococcal pathogenesis, we explored the possibility that a disease isolate expresses an uncharacterized superantigen. We screened culture supernatants for superantigen activity with a major histocompatibility complex class II-dependent T cell proliferation assay. Initial fractionation with red dye A chromatography indicated production of a class II-dependent T cell mitogen by a toxic shock-like syndrome (TSLS) strain. The amino terminus of the purified streptococcal superantigen was more homologous to the amino termini of staphylococcal enterotoxins B, C1, and C3 (SEB, SEC1, and SEC3), than to those of pyrogenic exotoxins A, B, C or other streptococcal toxins. The molecule, designated SSA, had the same pattern of class II isotype usage as SEB in T cell proliferation assays. However, it differed in its pattern of human T cell activation, as measured by quantitative polymerase chain reaction with V beta-specific primers. SSA activated human T cells that express V beta 1, 3, 15 with a minor increase of V beta 5.2-bearing cells, whereas SEB activated V beta 3, 12, 15, and 17-bearing T cells. Immunoblot analysis of 75 disease isolates from several localities detected SSA production only in group A streptococci, and found that SSA is apparently confined to only three clonal […] Find the latest version: https://jci.me/116641/pdf A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C Joseph A.