Level of Measurement

Total Page:16

File Type:pdf, Size:1020Kb

Level of Measurement Level of measurement From Wikipedia, the free encyclopedia The "levels of measurement", or scales of measure are expressions that typically refer to the theory of scale types developed by the psychologist Stanley Smith Stevens. Stevens proposed his theory in a 1946 Science article titled "On the theory of scales of measurement".[1] In that article, Stevens claimed that all measurement in science was conducted using four different types of scales that he called "nominal", "ordinal", "interval" and "ratio". Contents 1 The theory of scale types o 1.1 Nominal scale o 1.2 Ordinal scale o 1.3 Interval scale o 1.4 Ratio measurement 2 Debate on classification scheme 3 Scale types and Stevens' "operational theory of measurement" 4 Notes 5 See also 6 References 7 External links The theory of scale types Stevens (1946, 1951) proposed that measurements can be classified into four different types of scales. These are shown in the table below as: nominal, ordinal, interval, and ratio. Admissible Scale Mathematical Scale Type Permissible Statistics Transformation structure nominal (also standard set One to One denoted as mode, Chi-square structure (equality (=)) categorical) (unordered) Monotonic ordinal median, percentile totally ordered set increasing (order (<)) mean, standard deviation, correlation, Positive linear interval affine line regression, analysis of variance (affine) All statistics permitted for interval scales plus the following: geometric mean, Positive similarities ratio field harmonic mean, coefficient of variation, (multiplication) logarithms Nominal scale At the nominal scale, i.e., for a nominal category, one uses labels; for example, rocks can be generally categorized as igneous, sedimentary and metamorphic. For this scale, some valid operations are equivalence and set membership. Nominal measures offer names or labels for certain characteristics. Variables assessed on a nominal scale are called categorical variables; see also categorical data. Stevens (1946, p. 679) must have known that claiming nominal scales to measure obviously non- quantitative things would have attracted criticism, so he invoked his theory of measurement to justify nominal scales as measurement: …the use of numerals as names for classes is an example of the assignment of numerals “ according to rule. The rule is: Do not assign the same numeral to different classes or different numerals to the same class. Beyond that, anything goes with the nominal scale. ” The central tendency of a nominal attribute is given by its mode; neither the mean nor the median can be defined. We can use a simple example of a nominal category: first names. Looking at nearby people, we might find one or more of them named Aamir. Aamir is their label; and the set of all first names is a nominal scale. We can only check whether two people have the same name (equivalence) or whether a given name is in on a certain list of names (set membership), but it is impossible to say which name is greater or less than another (comparison) or to measure the difference between two names. Given a set of people, we can describe the set by its most common name (the mode), but cannot provide an "average name" or even the "middle name" among all the names. However, if we decide to sort our names alphabetically (or to sort them by length; or by how many times they appear in the US Census), we will begin to turn this nominal scale into an ordinal scale. Ordinal scale Rank-ordering data simply puts the data on an ordinal scale. Ordinal measurements describe order, but not relative size or degree of difference between the items measured. In this scale type, the numbers assigned to objects or events represent the rank order (1st, 2nd, 3rd, etc.) of the entities assessed. A Likert Scale is a type of ordinal scale and may also use names with an order such as: "bad", "medium", and "good"; or "very satisfied", "satisfied", "neutral", "unsatisfied", "very unsatisfied." An example of an ordinal scale is the result of a horse race, which says only which horses arrived first, second, or third but include no information about race times. Another is the Mohs scale of mineral hardness, which characterizes the hardness of various minerals through the ability of a harder material to scratch a softer one, saying nothing about the actual hardness of any of them. Yet another example is military ranks; they have an order, but no well- defined numerical difference between ranks. When using an ordinal scale, the central tendency of a group of items can be described by using the group's mode (or most common item) or its median (the middle-ranked item), but the mean (or average) cannot be defined. In 1946, Stevens observed that psychological measurement usually operates on ordinal scales, and that ordinary statistics like means and standard deviations do not have valid interpretations. Nevertheless, such statistics can often be used to generate fruitful information, with the caveat that caution should be taken in drawing conclusion from such statistical data. Psychometricians like to theorise that psychometric tests produce interval scale measures of cognitive abilities (e.g. Lord & Novick, 1968; von Eye, 2005) but there is little prima facie evidence to suggest that such attributes are anything more than ordinal for most psychological data (Cliff, 1996; Cliff & Keats, 2003; Michell, 2008). In particular,[2] IQ scores reflect an ordinal scale, in which all scores are only meaningful for comparison, rather than an interval scale, in which a given number of IQ "points" corresponds to a unit of intelligence.[3][4][5] Thus it is an error to write that an IQ of 160 is just as different from an IQ of 130 as an IQ of 100 is different from an IQ of 70.[6][7] In mathematical order theory, an ordinal scale defines a total preorder of objects (in essence, a way of sorting all the objects, in which some may be tied). The scale values themselves (such as labels like "great", "good", and "bad"; 1st, 2nd, and 3rd) have a total order, where they may be sorted into a single line with no ambiguities. If numbers are used to define the scale, they remain correct even if they are transformed by any monotonically increasing function. This property is known as the order isomorphism. A simple example follows: Judge's score Score minus 8 Tripled score Cubed score 3 x x-8 3x x Alice's cooking ability 10 2 30 1000 Bob's cooking ability 9 1 27 729 Claire's cooking ability 8.5 0.5 25.5 614.125 Dana's cooking ability 8 0 24 512 Edgar's cooking ability 5 -3 15 125 Since x-8, 3x, and x3 are all monotonically increasing functions, replacing the ordinal judge's score by any of these alternate scores does not affect the relative ranking of the five people's cooking abilities. Each column of numbers is an equally legitimate ordinal scale for describing their abilities. However, the numerical (additive) difference between the various ordinal scores has no particular meaning. See also Strict weak ordering. Interval scale Quantitative attributes are all measurable on interval scales, as any difference between the levels of an attribute can be multiplied by any real number to exceed or equal another difference. A highly familiar example of interval scale measurement is temperature with the Celsius scale. In this particular scale, the unit of measurement is 1/100 of the temperature difference between the freezing and boiling points of water under a pressure of 1 atmosphere. The "zero point" on an interval scale is arbitrary; and negative values can be used. The formal mathematical term is an affine space (in this case an affine line). The Likert scale, which is one of the most common scales used in survey research, would be a popular example and practical application of the 'interval scale'. Variables measured at the interval level are called "interval variables" or sometimes "scaled variables" as they have units of measurement. Ratios between numbers on the scale are not meaningful, so operations such as multiplication and division cannot be carried out directly. But ratios of differences can be expressed; for example, one difference can be twice another. The central tendency of a variable measured at the interval level can be represented by its mode, its median, or its arithmetic mean. Statistical dispersion can be measured in most of the usual ways, which just involved differences or averaging, such as range, interquartile range, and standard deviation. Since one cannot divide, one cannot define measures that require a ratio, such as studentized range or coefficient of variation. More subtly, while one can define moments about the origin, only central moments are useful, since the choice of origin is arbitrary and not meaningful. One can define standardized moments, since ratios of differences are meaningful, but one cannot define coefficient of variation, since the mean is a moment about the origin, unlike the standard deviation, which is (the square root of) a central moment. Ratio measurement Most measurement in the physical sciences and engineering is done on ratio scales. Mass, length, time, plane angle, energy and electric charge are examples of physical measures that are ratio scales. The scale type takes its name from the fact that measurement is the estimation of the ratio between a magnitude of a continuous quantity and a unit magnitude of the same kind (Michell, 1997, 1999). Informally, the distinguishing feature of a ratio scale is the possession of a non- arbitrary zero value. For example, the Kelvin temperature scale has a non-arbitrary zero point of absolute zero, which is denoted 0K and is equal to -273.15 degrees Celsius. This zero point is non arbitrary as the particles that compose matter at this temperature have zero kinetic energy.
Recommended publications
  • An Introduction to Psychometric Theory with Applications in R
    What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD An introduction to Psychometric Theory with applications in R William Revelle Department of Psychology Northwestern University Evanston, Illinois USA February, 2013 1 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Overview 1 Overview Psychometrics and R What is Psychometrics What is R 2 Part I: an introduction to R What is R A brief example Basic steps and graphics 3 Day 1: Theory of Data, Issues in Scaling 4 Day 2: More than you ever wanted to know about correlation 5 Day 3: Dimension reduction through factor analysis, principal components analyze and cluster analysis 6 Day 4: Classical Test Theory and Item Response Theory 7 Day 5: Structural Equation Modeling and applied scale construction 2 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Outline of Day 1/part 1 1 What is psychometrics? Conceptual overview Theory: the organization of Observed and Latent variables A latent variable approach to measurement Data and scaling Structural Equation Models 2 What is R? Where did it come from, why use it? Installing R on your computer and adding packages Installing and using packages Implementations of R Basic R capabilities: Calculation, Statistical tables, Graphics Data sets 3 Basic statistics and graphics 4 steps: read, explore, test, graph Basic descriptive and inferential statistics 4 TOD 3 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD What is psychometrics? In physical science a first essential step in the direction of learning any subject is to find principles of numerical reckoning and methods for practicably measuring some quality connected with it.
    [Show full text]
  • Analysis of Questionnaires and Qualitative Data – Non-Parametric Tests
    Analysis of Questionnaires and Qualitative Data – Non-parametric Tests JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Lecture SE 2013, Poznań Recalling Basics Measurment Scales • Four scales of measurements commonly used in statistical analysis: nominal, ordinal, interval, and ratio scales •A nominal scale -> there is no relative ordering of the categories, e.g. sex of a person, colour, trademark, • Ordinal -> place object in a relative ordering, Many rating scales (e.g. never, rarely, sometimes, often, always) • Interval -> Places objects in order and equal differences in value denote equal differences in what we are measuring • Ratio -> similar interval measurement but also has a ‘true zero point’ and you can divide values. Coding values with numbers Numbers are used to code nominal or ordered values but they are not true numbers! Only for interval or ratio measurements they are proper number – e.g. you are allowed to perform algebraic operations (+, -, *, /) Most of our considerations as to statistical data analysis or prediction methods concern → numerical (interval, ratio) data. • In many domains we collect nominal or oridinal data • Use of Questionnaires or Survey Studies in SE! • Also collected in Web applications Types of Variables in Questionnaires • Yes/No Questions Any question that has yes or no as a possible response is nominal • Two or multi-values (options) • Gender (Femal vs. Male) • Activity nominal data type of 6 choices of activity in the park: • sport, •picnic, • reading, • walk (including with the dog), • meditation, •jog. Likert Scales • A special kind of survey question uses a set of responses that are ordered so that one response is greater (or preferred) than another.
    [Show full text]
  • Education Quarterly Reviews
    Education Quarterly Reviews Allanson, Patricia E., and Notar, Charles E. (2020), Statistics as Measurement: 4 Scales/Levels of Measurement. In: Education Quarterly Reviews, Vol.3, No.3, 375-385. ISSN 2621-5799 DOI: 10.31014/aior.1993.03.03.146 The online version of this article can be found at: https://www.asianinstituteofresearch.org/ Published by: The Asian Institute of Research The Education Quarterly Reviews is an Open Access publication. It May be read, copied, and distributed free of charge according to the conditions of the Creative ComMons Attribution 4.0 International license. The Asian Institute of Research Education Quarterly Reviews is a peer-reviewed International Journal. The journal covers scholarly articles in the fields of education, linguistics, literature, educational theory, research, and methodologies, curriculum, elementary and secondary education, higher education, foreign language education, teaching and learning, teacher education, education of special groups, and other fields of study related to education. As the journal is Open Access, it ensures high visibility and the increase of citations for all research articles published. The Education Quarterly Reviews aiMs to facilitate scholarly work on recent theoretical and practical aspects of education. The Asian Institute of Research Education Quarterly Reviews Vol.3, No.3, 2020: 375-385 ISSN 2621-5799 Copyright © The Author(s). All Rights Reserved DOI: 10.31014/aior.1993.03.03.146 Statistics as Measurement: 4 Scales/Levels of Measurement 1 2 Patricia E. Allanson , Charles E. Notar 1 Liberty University 2 Jacksonville State University. EMail: [email protected] (EMeritus) Abstract This article discusses the basics of the “4 scales of MeasureMent” and how they are applicable to research or everyday tools of life.
    [Show full text]
  • Fatigue and Psychological Distress in the Working Population Psychometrics, Prevalence, and Correlates
    Journal of Psychosomatic Research 52 (2002) 445–452 Fatigue and psychological distress in the working population Psychometrics, prevalence, and correlates Ute Bu¨ltmanna,*, Ijmert Kanta, Stanislav V. Kaslb, Anna J.H.M. Beurskensa, Piet A. van den Brandta aDepartment of Epidemiology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands bDepartment of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA Received 11 October 2000 Abstract Objective: The purposes of this study were: (1) to explore the distinct pattern of associations was found for fatigue vs. relationship between fatigue and psychological distress in the psychological distress with respect to demographic factors. The working population; (2) to examine associations with demographic prevalence was 22% for fatigue and 23% for psychological and health factors; and (3) to determine the prevalence of fatigue distress. Of the employees reporting fatigue, 43% had fatigue only, and psychological distress. Methods: Data were taken from whereas 57% had fatigue and psychological distress. Conclusions: 12,095 employees. Fatigue was measured with the Checklist The results indicate that fatigue and psychological distress are Individual Strength, and the General Health Questionnaire (GHQ) common in the working population. Although closely associated, was used to measure psychological distress. Results: Fatigue was there is some evidence suggesting that fatigue and psychological fairly well associated with psychological distress. A separation
    [Show full text]
  • When Psychometrics Meets Epidemiology and the Studies V1.Pdf
    When psychometrics meets epidemiology, and the studies which result! Tom Booth [email protected] Lecturer in Quantitative Research Methods, Department of Psychology, University of Edinburgh Who am I? • MSc and PhD in Organisational Psychology – ESRC AQM Scholarship • Manchester Business School, University of Manchester • Topic: Personality psychometrics • Post-doctoral Researcher • Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh. • Primary Research Topic: Cognitive ageing, brain imaging. • Lecturer Quantitative Research Methods • Department of Psychology, University of Edinburgh • Primary Research Topics: Individual differences and health; cognitive ability and brain imaging; Psychometric methods and assessment. Journey of a talk…. • Psychometrics: • Performance of likert-type response scales for personality data. • Murray, Booth & Molenaar (2015) • Epidemiology: • Allostatic load • Measurement: Booth, Starr & Deary (2013); (Unpublished) • Applications: Early life adversity (Unpublished) • Further applications Journey of a talk…. • Methodological interlude: • The issue of optimal time scales. • Individual differences and health: • Personality and Physical Health (review: Murray & Booth, 2015) • Personality, health behaviours and brain integrity (Booth, Mottus et al., 2014) • Looking forward Psychometrics My spiritual home… Middle response options Strongly Agree Agree Neither Agree nor Disagree Strong Disagree Disagree 1 2 3 4 5 Strongly Agree Agree Unsure Disagree Strong Disagree
    [Show full text]
  • Levels of Measurement and Types of Variables
    01-Warner-45165.qxd 8/13/2007 4:52 PM Page 6 6—— CHAPTER 1 evaluate the potential generalizability of research results based on convenience samples. It is possible to imagine a hypothetical population—that is, a larger group of people that is similar in many ways to the participants who were included in the convenience sample—and to make cautious inferences about this hypothetical population based on the responses of the sample. Campbell suggested that researchers evaluate the degree of similarity between a sample and hypothetical populations of interest and limit general- izations to hypothetical populations that are similar to the sample of participants actually included in the study. If the convenience sample consists of 50 Corinth College students who are between the ages of 18 and 22 and mostly of Northern European family back- ground, it might be reasonable to argue (cautiously, of course) that the results of this study potentially apply to a hypothetical broader population of 18- to 22-year-old U.S.col- lege students who come from similar ethnic or cultural backgrounds. This hypothetical population—all U.S.college students between 18 and 22 years from a Northern European family background—has a composition fairly similar to the composition of the conve- nience sample. It would be questionable to generalize about response to caffeine for pop- ulations that have drastically different characteristics from the members of the sample (such as persons who are older than age 50 or who have health problems that members of the convenience sample do not have). Generalization of results beyond a sample to make inferences about a broader popula- tion is always risky, so researchers should be cautious in making generalizations.
    [Show full text]
  • Chapter 1 Getting Started Section 1.1
    Chapter 1 Getting Started Section 1.1 1. (a) The variable is the response regarding frequency of eating at fast-food restaurants. (b) The variable is qualitative. The categories are the number of times one eats in fast-food restaurants. (c) The implied population is responses for all adults in the U.S. 3. (a) The variable is student fees. (b) The variable is quantitative because arithmetic operations can be applied to the fee values. (c) The implied population is student fees at all colleges and universities in the U.S. 5. (a) The variable is the time interval between check arrival and clearance. (b) The variable is quantitative because arithmetic operations can be applied to the time intervals. (c) The implied population is the time interval between check arrival and clearance for all companies in the five-state region. 7. (a) Length of time to complete an exam is a ratio level of measurement. The data may be arranged in order, differences and ratios are meaningful, and a time of 0 is the starting point for all measurements. (b) Time of first class is an interval level of measurement. The data may be arranged in order and differences are meaningful. (c) Class categories is a nominal level of measurement. The data consists of names only. (d) Course evaluation scale is an ordinal level of measurement. The data may be arranged in order. (e) Score on last exam is a ratio level of measurement. The data may be arranged in order, differences and ratios are meaningful, and a score of 0 is the starting point for all measurements.
    [Show full text]
  • Appropriate Statistical Analysis for Two Independent Groups of Likert
    APPROPRIATE STATISTICAL ANALYSIS FOR TWO INDEPENDENT GROUPS OF LIKERT-TYPE DATA By Boonyasit Warachan Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Mathematics Education Chair: Mary Gray, Ph.D. Monica Jackson, Ph.D. Jun Lu, Ph.D. Dean of the College of Arts and Sciences Date 2011 American University Washington, D.C. 20016 © COPYRIGHT by Boonyasit Warachan 2011 ALL RIGHTS RESERVED DEDICATION This dissertation is dedicated to my beloved grandfather, Sighto Chankomkhai. APPROPRIATE STATISTICAL ANALYSIS FOR TWO INDEPENDENT GROUPS OF LIKERT-TYPE DATA BY Boonyasit Warachan ABSTRACT The objective of this research was to determine the robustness and statistical power of three different methods for testing the hypothesis that ordinal samples of five and seven Likert categories come from equal populations. The three methods are the two sample t-test with equal variances, the Mann-Whitney test, and the Kolmogorov-Smirnov test. In additional, these methods were employed over a wide range of scenarios with respect to sample size, significance level, effect size, population distribution, and the number of categories of response scale. The data simulations and statistical analyses were performed by using R programming language version 2.13.2. To assess the robustness and power, samples were generated from known distributions and compared. According to returned p-values at different nominal significance levels, empirical error rates and power were computed from the rejection of null hypotheses. Results indicate that the two sample t-test and the Mann-Whitney test were robust for Likert-type data.
    [Show full text]
  • Properties and Psychometrics of a Measure of Addiction Recovery Strengths
    bs_bs_banner REVIEW Drug and Alcohol Review (March 2013), 32, 187–194 DOI: 10.1111/j.1465-3362.2012.00489.x The Assessment of Recovery Capital: Properties and psychometrics of a measure of addiction recovery strengths TEODORA GROSHKOVA1, DAVID BEST2 & WILLIAM WHITE3 1National Addiction Centre, Institute of Psychiatry, King’s College London, London, UK, 2Turning Point Drug and Alcohol Centre, Monash University, Melbourne, Australia, and 3Chestnut Health Systems, Bloomington, Illinois, USA Abstract Introduction and Aims. Sociological work on social capital and its impact on health behaviours have been translated into the addiction field in the form of ‘recovery capital’ as the construct for assessing individual progress on a recovery journey.Yet there has been little attempt to quantify recovery capital.The aim of the project was to create a scale that assessed addiction recovery capital. Design and Methods. Initial focus group work identified and tested candidate items and domains followed by data collection from multiple sources to enable psychometric assessment of a scale measuring recovery capital. Results. The scale shows moderate test–retest reliability at 1 week and acceptable concurrent validity. Principal component analysis determined single factor structure. Discussion and Conclusions. The Assessment of Recovery Capital (ARC) is a brief and easy to administer measurement of recovery capital that has acceptable psychometric properties and may be a useful complement to deficit-based assessment and outcome monitoring instruments for substance dependent individuals in and out of treatment. [Groshkova T, Best D, White W. The Assessment of Recovery Capital: Properties and psychometrics of a measure of addiction recovery strengths. Drug Alcohol Rev 2013;32:187–194] Key words: addiction, recovery capital measure, assessment, psychometrics.
    [Show full text]
  • PSY610: PSYCHOMETRICS/STATISTICS FALL, 2006 Dr. Gregory T. Smith Teaching Assistant: 105 Kastle Hall Lauren Gudonis 257-6454 L
    PSY610: PSYCHOMETRICS/STATISTICS FALL, 2006 Dr. Gregory T. Smith Teaching Assistant: 105 Kastle Hall Lauren Gudonis 257-6454 [email protected] [email protected] office: 111 J Office Hours: Monday and Wednesday 11:00 - 11:45 and by appt. Required Texts: 1. Keppel, G. (2004). Design and Analysis: A Researcher’s Handbook. (4th Edition). Upper Saddle River, N.J.: Pearson/Prentice-Hall, Inc. Course Outline 8/24 1. Introduction. Independent and dependent variables. Correlational and experimental studies. Implications for interpretation of results. Example. Randomization and Random Sampling. 8/29 2. Levels of Measurement. Examples. Relation of levels of measurement to statistical tests. Chart. Three major questions to be answered by statistical analysis: existence, nature, and magnitude of relationships between X and Y (or Y1 and Y2). Introduction to probability. 8/31 3. Probability: an intuitive approach and a formal approach. Independence and conditional probabilities. Introduction to the logic of hypothesis testing. 9/5 4. The logic of hypothesis testing. Introduction to parametric (normal distribution) techniques. One sample goodness of fit test z. Sampling distribution of the mean. Central limit theorem. Standard error of the mean. Lab #1 Introduction to lab. Probability. Definitions, examples, and exercises. Introduction to computer system. Homework #1 assigned. 9/7 5. Logic of hypothesis testing, decision rule, terms, power, Type I and Type II errors. 9/12 6. Student's t test: sampling distribution, procedures, assumptions, degrees of freedom. Unbiased and biased estimates. Directional v. nondirectional tests, confidence intervals, t and z compared. Lab #2 Review material from preceding two lectures; homework; SPSS exercises. 9/14 7.
    [Show full text]
  • To Get SPSS to Conduct a One-Way Chi-Square Test on Your Data
    Biomeasurement 4e Dawn Hawkins SPSS24 HELP SHEET: Mann-Whitney U test (using legacy dialogs) CONTENTS 1. How to enter data to do a Mann-Whitney U test test. 2. How to do a Mann-Whitney U test test. 1. How to enter data to do a Mann-Whitney U test test. For general advice on data entry see the “How to enter data into SPSS” help sheet. Mann-Whitney U test tests are used on unrelated data: Data for the dependent variable go in one column and data for the independent variable goes in another. In this example, the dependent variable is BMD and the independent variable is SEX. BMD is bone-density measurement measured in grams per square centimetre of the neck of the femur which is a scale level of measurement). SEX is measured at the nominal level: either 1 (value label = female) or 2 (value label = male). Variable View Data View Data View (View – Value Labels off) (View – Value Labels on) Page 1 of 2 Dawn Hawkins: Anglia Ruskin University, January 2019 Biomeasurement 4e Dawn Hawkins 2. How to do a Mann-Whitney U test test… To get SPSS to conduct a Mann-Whitney U test test : Open your data file. Select: Analyze – Nonparametric Tests – Legacy Dialogs - 2 Independent Samples... This will bring up the Two-Independent-Samples Tests window. Select the variable that you want to analyse, and send it to the Test Variable List box (in the example above this is Bone Density Measurement). Select the independent variable, and send it to the Grouping Variable box (in the example above this is Sex).
    [Show full text]
  • Levels of Measurement
    8/16/18, 223 PM LO1-5 Distinguish between nominal, ordinal, interval, and ratio levels of measurement. LEVELS OF MEASUREMENT Data can be classified according to levels of measurement. The level of measurement determines how data should be summarized and presented. It also will indicate the type of statistical analysis that can be performed. Here are two examples of the relationship between measurement and how we apply statistics. There are six colors of candies in a bag of M&Ms. Suppose we assign brown a value of 1, yellow 2, blue 3, orange 4, green 5, and red 6. What kind of variable is the color of an M&M? It is a qualitative variable. Suppose someone summarizes M&M color by adding the assigned color values, divides the sum by the number of M&Ms, and reports that the mean color is 3.56. How do we interpret this statistic? You are correct in concluding that it has no meaning as a measure of M&M color. As a qualitative variable, we can only report the count and percentage of each color in a bag of M&Ms. As a second example, in a high school track meet there are eight competitors in the 400-meter run. We report the order of finish and that the mean finish is 4.5. What does the mean finish tell us? Nothing! In both of these instances, we have not used the appropriate statistics for the level of measurement. © Ron Buskirk/Alamy Stock Photo There are four levels of measurement: nominal, ordinal, interval, and ratio.
    [Show full text]