Universita' Degli Studi Di Milano Dna

Total Page:16

File Type:pdf, Size:1020Kb

Universita' Degli Studi Di Milano Dna UNIVERSITA’ DEGLI STUDI DI MILANO Scuola di Dottorato in Scienze Biomediche Cliniche e Sperimentali Corso di Dottorato in Biotecnologie Applicate alle Scienze Mediche Ciclo XXIV Tesi di dottorato di ricerca DNA METHYLATION AS A PREDISPOSITION FACTOR IN THE PATHOGENESIS OF CONGENITAL HYPOTHYROIDISM IN PRETERM INFANTS Facoltà di Medicina e Chirurgia Settore Scientifico Disciplinare Bio13 Coordinatore: Prof. Enrico GINELLI Tutor: Prof. Luca PERSANI Dottorando: Federica MARELLI Matricola n. R08135 Anno Accademico 2011-2012 Table of contests TABLE OF CONTESTS ................................................................................................................... 2 ABSTRACT ................................................................................................................................... 5 INTRODUCTION-CHAPTER I ......................................................................................................... 7 1. THYROID GLAND DEVELOPMENT AND DEFECTS ...................................................................... 7 1.1 FETAL THYROID DEVELOPMENT: A BRIEF OVERVIEW ............................................................ 7 1.1.1 MORPHOLOGICAL ASPECTS ................................................................................................ 7 1.1.2 GENETIC COMPONENT ON THYROID DEVELOPMENT ....................................................... 10 1.2 THYROID HORMONE METABOLISM AND ACTION ............................................................... 11 1.3 CONGENITAL HYPOTHYROIDISM ......................................................................................... 15 1.3.1 THYROID DYSGENESIS ...................................................................................................... 15 1.3.2 DYSORMONOGENESIS ...................................................................................................... 17 1.3.3 INCIDENCES OF CONGENITAL HYPOTHYROIDISM ............................................................. 18 INTRODUCTION-CHAPTER II ...................................................................................................... 22 2. EPIGENETIC MECHANISMS .................................................................................................... 22 2.1 A BRIEF OVERVIEW ............................................................................................................. 22 2.2 EPIGENETIC COMPONENTS ................................................................................................. 23 2.2.1 HISTONES MODIFICATIONS .............................................................................................. 23 2.2.2 MICRORNAS ..................................................................................................................... 24 2.3 THE DNA METHYLATION ..................................................................................................... 26 2.3.1 INTRODUCTION OF DNA METHYLATION........................................................................... 26 2.3.2 5′-METHYLCYTOSINE AND THE CPG DINUCLEOTIDE .......................................................... 28 2.3.3 GENOMIC DISTRIBUTION OF 5′-METHYLCYTOSINE ........................................................... 31 2.3.4 CPG SITES HELP DETERMINE GENE EXPRESSION STATE .................................................... 34 2.4 ROLES OF DNA METHYLATION ............................................................................................ 35 2.4.1 TRANSPOSON SUPPRESSION-DNA METHYLATION AS A GENETIC DEFENSE ...................... 35 2.4.2 DNA METHYLATION AND DEVELOPMENT ........................................................................ 36 2.4.3 X CHROMOSOME INACTIVATION ..................................................................................... 38 2.4.4 IMPRINTING ..................................................................................................................... 39 INTRODUCTION-CHAPTER III ..................................................................................................... 41 3. DNA METHYLATION AND HUMAN DISEASES ......................................................................... 41 3.1 EPIGENETIC DYSREGULATION IN HUMAN DISEASES ............................................................ 41 3.1.1 DNA METHYLATION AND CANCER .................................................................................... 41 2 3.1.2 DNA METHYLATION AND REPRODUCTION ....................................................................... 42 3.1.3 DNA METHYLATION AND CARDIOVASCULAR DISEASE ...................................................... 43 3.1.4 DNA METHYLATION AND TYPE 2 DIABETES ...................................................................... 44 3.1.5 DNA METHYLATION AND OBESITY .................................................................................... 45 3.2. DEVELOPMENTAL ORIGIN OF HEALTH AND DISEASE HYPOTHESIS (DOHAD) ...................... 46 3.2.1 FETAL PROGRAMMING ..................................................................................................... 46 3.2.2 RETROSPECTIVE STUDIES .................................................................................................. 50 3.2.3 EXPERIMENTAL STUDIES ................................................................................................... 51 CHAPTER IV ............................................................................................................................... 53 4. AIMS OF PHD PROJECT .......................................................................................................... 54 CHAPTER V ................................................................................................................................ 55 5. MATERIALS AND METHODS ................................................................................................... 55 5.1 SAMPLES COLLECTION AND DNA EXTRACTION .................................................................... 56 5.1.1 RECRUITMENT OF PATIENTS ............................................................................................. 56 5.1.2 DNA ISOLATION FROM PERIPHERAL BLOOD SAMPLES ..................................................... 56 5.1.3 DNA QUALITY AND QUANTITY .......................................................................................... 58 5.2 DNA METHYLATION ANALYSIS............................................................................................. 59 5.2.1 DNA BISULFITE TREATMENT ............................................................................................. 59 5.2.2 INFINIUM ASSAY FOR METHYLATION ............................................................................... 60 5.3 ANALYSIS OF DNA METHYLATION DATA .............................................................................. 63 5.3.1 EXPERIMENTAL DESIGN AND QUALITY CONTROL ............................................................. 63 5.3.2 PRINCIPAL COMPONENT ANALYSIS .................................................................................. 64 5.3.3 DETERMINATION OF DIFFERENTIALLY METHYLATED CPG SITES........................................ 64 5.4 BIOLOGICAL PROCESSES AND PATHWAY ANALYSIS ............................................................. 66 5.4.1 FUNCTIONAL ANNOTATION OF GENE LISTS ...................................................................... 66 5.4.2 INDIVIDUAL GENE INFORMATION .................................................................................... 66 5.5 ANALYSIS OF MTHFR POLYMORPHISMS .............................................................................. 67 CHAPTER VI ............................................................................................................................... 68 6. RESULTS ................................................................................................................................ 68 6.1 DESIGN OF DNA METHYLATION STUDY ............................................................................... 68 6.1.1 STATISTICAL METHODS .................................................................................................... 68 6.1.2 COLLECTIONS OF CH AND CONTROL SUBJECTS ................................................................. 69 6.1.3 DESIGN OF DNA METHYLATION STUDIES .......................................................................... 71 6.1.4 CATEGORIZATION OF SUBJECTS ACCORDING TO THEIR CLINICAL DATA ........................... 74 3 6.2 ANOVA STATISTICAL ANALYSIS ........................................................................................... 78 6.3 CLUSTERING OF SUBJECTS ................................................................................................... 80 6.4 GLOBAL DNA METHYLATION ANALYSIS ............................................................................... 82 6.4.1 REPRESENTATION OF DNA METHYLATION TRENDS .......................................................... 82 6.4.2 COMPARISON OF MEAN-AVGBETA VALUES ..................................................................... 84 6.4.3 SUMMARY OF GLOBAL METHYLATION ANALYSIS RESULTS .............................................. 87 6.5 GENE-SPECIFIC DNA METHYLATION ANALYSIS .................................................................... 88 6.5.1 SELECTION OF DIFFERENTIALLY METHYLATED GENES (DMGS) ......................................... 88 6.5.2 SELECTION OF “COMMON GENES” ................................................................................... 90 6.5.3
Recommended publications
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • REG Gene Expression in Inflamed and Healthy Colon Mucosa Explored by in Situ Hybridisation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Cell Tissue Res (2013) 352:639–646 DOI 10.1007/s00441-013-1592-z REGULAR ARTICLE REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation Atle van Beelen Granlund & Ann Elisabet Østvik & Øystein Brenna & Sverre H. Torp & Bjørn I. Gustafsson & Arne Kristian Sandvik Received: 10 December 2012 /Accepted: 14 February 2013 /Published online: 22 March 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The regenerating islet-derived (REG) gene family used in situ hybridisation to demonstrate the cellular encodes a group of proteins highly expressed in several localisation of REG expression in healthy and diseased human pathologies, many of which are associated with colonic mucosa. Samples drawn from an IBD cohort includ- epithelial inflammation. All human family members, name- ing both inflamed and un-inflamed colonic mucosa are ly REG1A, REG1B, REG3A and REG4, are closely related described, as are samples from non-IBD inflammation and in genomic sequence and all are part of the c-type lectin healthy controls. Immunohistochemistry against known superfamily. REGs are highly expressed during inflamma- cell-type markers on serial sections has localised the expres- tory bowel disease (IBD)-related colonic inflammation and sion of REGs to metaplastic Paneth cells (REG1A, REG1B the in vivo expression pattern of REG1A and REG4 has and REG3A) and enteroendocrine cells (REG4), with a been localised by using immunohistochemistry. However, marked expansion of expression during inflammation. The the function of the encoded proteins is largely unknown and group of REGs can, based on gene expression patterns, be the cellular localisation of REG expression during colonic divided into at least two groups; REG1A, REG1B and inflammation has not been described.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Letter to the Editor Potential Function of MMP3 Gene in Degradation Of
    66 Biomed Environ Sci, 2021; 34(1): 66-70 Letter to the Editor Potential Function of MMP3 Gene in Degradation of Extracellular Matrix Complex in Colorectal Carcinoma* DAI Xiao Yong1,&, SONG An Yi1,2,&, MU Lan1, WANG Li Jun1, and HUANG Lai Qiang1,2,# Colorectal cancer (CRC) is a kind of malignant language software through special packages such as tumor that occurs in the digestive tract. CRC occurs bioconductors and limma[2]. In addition, analysis of globally and has high rates of morbidity and down-regulated genes may reveal functional defects mortality. Its incidence and mortality are second and mutations that trigger the occurrence of cancer. only to gastric cancer, esophageal cancer, and Meanwhile, over-expressed genes may be useful as primary liver cancer in digestive system biomarkers in the clinic or to identify potential malignancies. Most CRC cases are adenomas. A few antigen targets. Analysis using conventional are squamous epithelial cancers, which can spread methods, such as enrichment analysis and protein- to adjacent tissues and organs through lymph and protein interaction (PPI) networks, analysis of blood circulation, or directly. The occurrence of CRC differentially expressed genes (DEGs) may provide a is related to factors that include gene mutation, novel approach to reveal significant genes and dietary habits, family disease history, smoking, signaling pathways related to disease. drinking, and external carcinogens. Diagnostic Based on special experimental processing methods for CRC mainly include digital rectal conditions and uniform statistical method of examination, X-ray barium enema, sigmoidoscopy, samples, the refined GAE110224 gene chips were and fiber colonoscopy. However, low sensitivity of chosen for this study from the GEO database.
    [Show full text]
  • Reg Proteins Promote Acinar-To-Ductal Metaplasia and Act As Novel Diagnostic and Prognostic Markers in Pancreatic Ductal Adenocarcinoma
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 47 Research Paper Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma Qing Li1,*, Hao Wang2,*, George Zogopoulos3,4, Qin Shao5, Kun Dong6, Fudong Lv6, Karam Nwilati1, Xian-yong Gui7, Adeline Cuggia4, Jun-Li Liu1, Zu-hua Gao5 1Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada 2Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China 3Department of Surgery, McGill University Health Centre, Montreal, QC, Canada 4Quebec Pancreas Cancer Study, McGill University Health Centre, Montreal, QC, Canada 5Department of Pathology, McGill University Health Centre, Montreal, QC, Canada 6Department of Pathology, You An Hospital, Capital Medical University, Beijing, China 7Department of Pathology, University of Calgary, Calgary, AB, Canada *These authors have contributed equally Correspondence to: Zu-hua Gao, email: [email protected] Jun-Li Liu, email: [email protected] Keywords: Reg family proteins, pancreatic ductal adenocarcinoma, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, cholangiocarcinoma Received: March 01, 2016 Accepted: October 13, 2016 Published: October 24, 2016 ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor. Acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) are both precursor lesions that lead to the development of PDAC. Reg family proteins (Reg1A, 1B, 3A/G, 4) are a group of calcium-dependent lectins that promote islet growth in response to inflammation and/or injuries. The aim of this study was to establish a role for Reg proteins in the development of PDAC and their clinical value as biomarkers.
    [Show full text]
  • Recombinant Human Reg1b Catalog Number: 2090-RG
    Recombinant Human Reg1B Catalog Number: 2090-RG DESCRIPTION Source E. coli­derived Gln23­Asn166, with an N­terminal Met Accession # P48304 N­terminal Sequence Met Analysis Predicted Molecular 16 kDa Mass SPECIFICATIONS SDS­PAGE 16 kDa, reducing conditions Activity Measured in a cell proliferation assay using RT4­D6P2T rat schwannoma cells. The ED50 for this effect is 0.15­0.75 μg/mL. Endotoxin Level <0.10 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE with silver staining. Formulation Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 500 μg/mL in PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles. l 12 months from date of receipt, ­20 to ­70 °C as supplied. l 1 month, 2 to 8 °C under sterile conditions after reconstitution. l 3 months, ­20 to ­70 °C under sterile conditions after reconstitution. DATA Bioactivity SDS­PAGE Recombinant Human Reg1B 1 μg/lane of Recombinant Human Reg1B (Catalog # 2090­RG) stimulates (Catalog # 2090­RG) was resolved with cell proliferation in RT4­D6P2T SDS­PAGE under reducing (R) and non­ rat schwannoma cells. The reducing (NR) conditions and visualized by ED50 for this effect is 0.15­0.75 silver staining, showing bands at 17.2 and μg/mL. 16.7 kDa, respectively. BACKGROUND Reg1B also called Lithostatine­1­β or Pancreatic stone protein 2 (PSP2) is a type I subclass member of the Reg gene family.
    [Show full text]
  • Martina Anna Finetti
    Next-Generation Sequencing Identifies Mechanisms Of Tumourigenesis Caused By Loss Of SMARCB1 In Malignant Rhabdoid Tumours Martina Anna Finetti Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Newcastle University Faculty of Medical Sciences Northern Institute for Cancer Research December 2014 Declaration I certify that no part of the material documented in this thesis has previously been submitted for a degree or other qualification in this or any other university. I declare that this thesis represents my own unaided work, carried out by myself, except where it is acknowledged otherwise in the thesis text. Martina Finetti December 2014 I Acknowledgements I would like to express my sincere gratitude to my supervisors, Dr. Daniel Williamson, Professor Steven Clifford, and Professor Simon Bailey. Their continuous support and their extraordinary knowledge of paediatric cancer and bioinformatics have helped me immensely throughout my research. I would also like to thank my assessors Professor John Lunec and Dr. Luke Gaughan and Professor Craig Robson for their constant guidance and encouragement for the last four years. I would like to thank the members of the Paediatric Brain Tumour Research Group. In particular I would like to thank Dr. Rebecca Hill, Matthew Selby and Dr Dolores Hamilton for the support, the encouragement and the time spent together in good and bad times. Special thanks go to all people at Sir James Spence Institute for their technical help and support. I would in particular thank Stefano and Alicia for our friendship: thank you for the moral support and the all the laughs we shared in between experiments! I would like to thank the NECCR, Children with cancer UK, Brain Trust, Love Oliver, CCLG, Karen and Iain Wark, The Smiley Ridley Fund, whose financial support made this project possible.
    [Show full text]
  • Bioinformatic Analysis of Autism Positional Candidate Genes Using Biological Databases and Computational Gene Network Prediction
    Genes, Brain and Behavior (2003) 2: 303–320 Copyright # Blackwell Munksgaard 2003 Bioinformatic analysis of autism positional candidate genes using biological databases and computational gene network prediction A. L. Yonan†,‡, A. A. Palmer†, K. C. Smith†, inform studies of autism, and to illustrate and explore I. Feldman†,††, H. K. Lee†, J. M. Yonan§, the increasing potential of bioinformatic approaches as † †,†† *,†,‡, S. G. Fischer , P. Pavlidis and T. C. Gilliam { a compliment to linkage analysis. Keywords: 17q, AGRE sample, autism, association studies, †Columbia Genome Center, Columbia University, New York, bioinformatics, candidate genes ‡ Department of Genetics and Development, Columbia University, Received 30 June 2003, revised 20 August 2003, accepted New York, for publication 21 August 2003 ¶Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, §Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York, Autism is a pervasive neurodevelopmental disorder that ††Department of Biomedical Informatics, Columbia University, severely impairs development of normal social and emotional New York, USA interactions and related forms of communication. Disease *Corresponding author: T. C. Gilliam, Columbia Genome Center, symptoms characteristically include unusually restricted and 1150 St. Nicholas Avenue, Room 508, New York, NY 10032, USA. E-mail: [email protected] stereotyped patterns of behaviors and interests. Autism describes the most severe manifestation
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • A Draft Map of the Human Proteome
    ARTICLE doi:10.1038/nature13302 A draft map of the human proteome Min-Sik Kim1,2, Sneha M. Pinto3, Derese Getnet1,4, Raja Sekhar Nirujogi3, Srikanth S. Manda3, Raghothama Chaerkady1,2, Anil K. Madugundu3, Dhanashree S. Kelkar3, Ruth Isserlin5, Shobhit Jain5, Joji K. Thomas3, Babylakshmi Muthusamy3, Pamela Leal-Rojas1,6, Praveen Kumar3, Nandini A. Sahasrabuddhe3, Lavanya Balakrishnan3, Jayshree Advani3, Bijesh George3, Santosh Renuse3, Lakshmi Dhevi N. Selvan3, Arun H. Patil3, Vishalakshi Nanjappa3, Aneesha Radhakrishnan3, Samarjeet Prasad1, Tejaswini Subbannayya3, Rajesh Raju3, Manish Kumar3, Sreelakshmi K. Sreenivasamurthy3, Arivusudar Marimuthu3, Gajanan J. Sathe3, Sandip Chavan3, Keshava K. Datta3, Yashwanth Subbannayya3, Apeksha Sahu3, Soujanya D. Yelamanchi3, Savita Jayaram3, Pavithra Rajagopalan3, Jyoti Sharma3, Krishna R. Murthy3, Nazia Syed3, Renu Goel3, Aafaque A. Khan3, Sartaj Ahmad3, Gourav Dey3, Keshav Mudgal7, Aditi Chatterjee3, Tai-Chung Huang1, Jun Zhong1, Xinyan Wu1,2, Patrick G. Shaw1, Donald Freed1, Muhammad S. Zahari2, Kanchan K. Mukherjee8, Subramanian Shankar9, Anita Mahadevan10,11, Henry Lam12, Christopher J. Mitchell1, Susarla Krishna Shankar10,11, Parthasarathy Satishchandra13, John T. Schroeder14, Ravi Sirdeshmukh3, Anirban Maitra15,16, Steven D. Leach1,17, Charles G. Drake16,18, Marc K. Halushka15, T. S. Keshava Prasad3, Ralph H. Hruban15,16, Candace L. Kerr19{, Gary D. Bader5, Christine A. Iacobuzio-Donahue15,16,17, Harsha Gowda3 & Akhilesh Pandey1,2,3,4,15,16,20 The availability of human genome sequence has transformed biomedical research over the past decade. However, an equiv- alent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry.
    [Show full text]
  • Human REG1B / PSPS2 Protein (His Tag)
    Human REG1B / PSPS2 Protein (His Tag) Catalog Number: 11638-H08H General Information SDS-PAGE: Gene Name Synonym: PSPS2; REGH; REGI-BETA; REGL Protein Construction: A DNA sequence encoding the human REG1B (NP_006498.1) (Met 1-Asn 166) was fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 95 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Regenerating gene (Reg), first isolated from a regenerating islet cDNA Stability: library, encodes a secretory protein with a growth stimulating effect on pancreatic beta cells, and could be associated with fibrocalculous Samples are stable for up to twelve months from date of receipt at -70 ℃ pancreatopathy. Reg and Reg-related genes which were expressed in various organs have been revealed to constitute a multigene family, the Predicted N terminal: Gln 23 Reg family consisting of four subtypes (types I, II, III, IV) and are involved Molecular Mass: in cancers and neurodegenerative diseases. Regenerating islet-derived 1 beta (REG1B), also known as Lithostathine-1-beta and Pancreatic stone The recombinant human REG1B consists of 155 amino acids and protein 2 (PSPS2), is a types I Reg protein and contains one typical C-type predictes a molecular mass of 17.7 kDa. In SDS-PAGE under reducing lectin domain. REG1B is a 166-amino acid protein which has 22 amino acid conditions, the apparent molecular mass of rh REG1B is approximately 19- substitutions in comparison with the previously isolated human REG1A, 21 kDa due to different glycosylation.
    [Show full text]