USGS Scientific Investigations Map 2940, Sheet 2

Total Page:16

File Type:pdf, Size:1020Kb

USGS Scientific Investigations Map 2940, Sheet 2 Scientific Investigations Map 2940 U.S. Department of the Interior Prepared in cooperation with Washington State Division of Geology and Earth Resources, U.S. National Park Service, and U.S. Forest Service Sheet 2 of 2 U.S. Geological Survey Pamphlets accompany map 123° 122° 121° 120° 121° 120° basalt lavas VOLCANIC 122° 121° 120° 49° 48°30’ erupt to form ARC 122° 121° 120° Mount Spickard oceanic plate BRITISH COLUMBIA MID-OCEAN 49° NORTHWEST OKANOGAN Ross Lake Fault Zone (System) Dome Ptarmigan River RIDGE Old Guard Glacier Mount Vedder Straight Peak Spine WESTERN Peak Peak Pk 49° Mountatn CANADA 5 BLOCK Point Baker Jack Mtn ocean floor basalt sedimentary Mt Baker ROBINSON MOUNTAIN UNITED METHOW Pasayten MOUNT BAKER [MB] rocks early Tertiary and Late Le Conte Glacier Twin 2000 [RM] STATES 10 Cretaceous metamorphism Sisters Jack METHOW BLOCK Mount 1600 San Juan BELLINGHAM Baker Mtn Robinson Mountain 4 CONCRETE 2000 Islands OCEANIC OCEANIC SU CHELAN BLOCK Methow CRUST rigid mantle B CRUST CASCADE 48°30’ Gardner Mtn LITHOSPHERE Creek DU Skagit C Fault Sedro 9 T rigid mantle DOMAIN Concrete CONTINENTAL TWISP plastic mantle plastic mantle IO Wolley Winthrop N early Late Cretaceous LITHOSPHERE 6 melting zone CONTINENTAL Sauk older STEHEKIN Washington (source of igneous rocks) Z melting zone metamorphism sedimentary O (more igneous rocks) Entiat DARRINGTON 1600 Pass Twisp MANTLE N OKANOGAN Mount rocks E 1200 P sediments SYSTEM U Misch LAKE LOBE G River Stehekin metamorphic Glacier pillow basalt E Lake rocks forming D T River a Peak Stillaguamish rr Darrington River dikes in METAMORPHIC g Vinegar Mt CHELAN S Glacier Chelan to Fault Fault O Bonanza n early Late Cretaceous 1200 U Peak gabbro Fault Pilchuck Peak -D 48° GLACIER N ultramafic rock e and Early Creataceous D SAUK RIVER [SR] TWISP [T] 2 3 v WENATCHEE BLOCK 48° i metamorphism Ophiolite layering ls SUBDUCTED OCEAN PLATE M Monroe 8 DOMAIN (OCEANIC LITHOSPHERE) t CORE MONROE Skykomish n OLYMPIC River F Chelan Figure 3. Sketch showing plate tectonic processes. The surface of the Earth is covered by many interlocking plates (lithosphere or crust). a MOUNTAINS 1 u l PUGET New crust forms at the mid-ocean ridge where oceanic plates move apart, allowing molten rock (magma) to reach the surface and erupt as t Z Figure 7. Looking south from east ridge of Mount Formidable [SRne]. Uplift and Skykomish Figure 8. View northwest from Bacon Peak [MBsw]. Rocks of Easton Terrane (Shuksan LOBE basalt lavas. An oceanic plate descends below a continental plate at a subduction zone where plates converge; rocks of both plates melt at o DOMAIN Early Cretaceous LEAVENWORTH n Leavenworth River 48° MELANGE BELTS erosion, especially glacial erosion, exposed rocks that formed deep in the Earth's crust. Greenschist) form Anderson Butte [MBsw]. A huge block of ultramafic rock (dunite) in e blueschist metamorphism depth to produce magma that rises toward the surface. Much of the magma collects in large masses (magma chambers) in the continental 800 ( Rocks of the Chelan Mountains terrane, including Cascade River Schist, form foreground SKYKOMISH RIVER [SK] CHELAN [C] D of Easton terrane Bell Pass Mélange underlies Twin Sisters [MBsw]. Mount Baker volcano dominates crust. Some magma reaches the surface to build a line of volcanoes (volcanic arc). Eventually the magma in the chambers cools and D cliffs. Underlying metamorphosed Marblemount pluton in Old Guard Peak [SRne] skyline. 47°30’ Snoqualmie Mount M SEATTLE Pass 7 crystallizes to become plutonic intrusive igneous rock. Sedimentary rocks on the ocean floor and some of the oceanic crust scrapes off at Leavenworth Stuart F extends along jagged ridge into middle foreground. The Cloudy Pass batholith, a Miocene Rattlesnake WENATCHEE Z Wenatchee depth to become metamorphic rocks. Blow-up shows idealized layering of oceanic lithosphere (ophiolite). ) Mtn White Chilwaukum Graben Cascade Arc pluton, supports Dome Peak [SRne] and Spire Point [SRne] in middle Yakima Enumclaw background. Glacier Peak volcano in the Cascade Magmatic Arc erupted on top of these River Figure 2. Map showing sources of geologic data for the Twisp 1:100,000 topographic Early Cretaceous and eroded older rocks. quadrangle and adjacent area. Line pattern indicates surficial geology modified from local Jurassic SNOQUALMIE PASS [SP] WENATCHEE [W] metamorphism 47° original sources using aerial photographs. 1. Barksdale, 1975; 2. Cater and Crowder, Fault Mount AREA OF MAP 1967; 3. Cater and Wright, 1967; 4. Dragovich and Norman, 1995; 5. Dragovich and (projected) River Ingalls Complex 47° Rainier others, 1997; 6. Haugerud, R.A., Mahoney, J.B., and Tabor, R.W., unpub. U.S. Geological Survey field maps (1990-2003); 7. Hopson and Mattinson, 1994 and C.A. Extensional Basins Contact—Dotted where Figure 9. Digital relief map showing maximum extent of Cordilleran 0 20 40 MILES uncertain Figure 1 Hopson, written commun., 2005; 8. Libby, 1964; 9. Miller, 1987; and 10. Tabor, 1961. Figure 4. Map showing major geologic structures and major Ice Sheet (white with blue contours; interval 200 m) in the North 0 40 80 KILOMETERS Columbia WASHINGTON metamorphic episodes in the North Cascades, Washington. NOTE: See Nontechnical Pamphlet for figures that are not on this map sheet Cascades during the Vashon stade; probable alpine glaciers on high peaks and beyond the margins of the main ice sheet are not shown Areas of multiple regional metamorphism are sketched from Fault—Dashed where field and laboratory data and descriptions in the literature. DDMFZ uncertain; dotted where (Waitt, 1972; Booth, 1990; Jon Riedel, written commun., 2005). Mount Figure 1. Map of northwestern Washington showing area of geologic map. Eight 1:100,000 topographic Boundaries are approximate. Domains shown are described Columbia Rver Basalt Group projected under cover Baker, Rattlesnake Mountain [SPnw], Jack Mountain [RMnw], and quadrangles that form geologic map are outlined and labeled. Quadrangle abbreviations and compass in Tabor and Haugerud (1999). or intruded by younger rocks many lesser peaks extended above the ice-sheet surface as nunataks. quadrants are used in the text as location codes to find places on the map, for example [MBse] is the 47° southeastern part of the Mount Baker quadrangle. Abbreviations for all quadrangles are shown here and along the edge of the geologic map. LIST OF MAP UNITS OROGENIC AND PRE-OROGENIC ROCKS EAST OF STRAIGHT CREEK FAULT [See technical or nontechnical pamphlets for unit descriptions. Note colors on the map vary as the underlying shaded- ROCKS UNIQUE TO WENATCHEE BLOCK relief base varies. Unit age in parentheses after the unit name is the age of assemblage or metamorphism for mélange and Ingalls terrane 122° 120° metamorphic units. Location codes, such as "[MBnw]," following a place name, unit name, or geologic feature name 121° Jis Ingalls terrane (Jurassic) 49° EXCELSIOR RIDGE FIGURE SYMBOLS FIGURE CORRELATION indicates a location in the northwest quadrant of the Mount Baker quadrangle. The eight 1:100,000-scale quadrangles are THRUST [Metamorphic and structural units shown with metamorphic or assemblage age; uncolored boxes outlined on the map, and quadrangle names and their abbreviations are labeled along the edges of the map, as well as on with dashed boundaries show protolith age. Asterisk indicates that box position represents protolith Jbi HC figures 1 and 5. The location code may consist of a quadrangle abbreviation or a combination of quadrangle and quadrant Resistant blocks of igneous and meta-igneous rocks Contact—Dotted where concealed and metamorphic age (see technical discussion)] abbreviations. A location code at the end of the rock descripton gives the unit location on the map] G Jbs SHUKSAN Resistant blocks of sedimentary rocks PAYSAYTEN CORRELATION OF MAP UNITS KC High-angle fault—Dotted where concealed UNCONSOLIDATED DEPOSITS Nason Terrane MOUNT HOZOMEEN X [For mélange and metamorphic units, position of boxes with solid boundaries indicates age of assemblage Pliocene, THRUST Unconsolidated deposits Pleistocene Knmg BAKER and Holocene Nason Ridge Migmatitic Gneiss (Late Cretaceous) or metamorphism, respectively; position of boxes with dashed boundaries indicates age of protolith.] MPS (Includes Quaternary NONGLACIAL DEPOSITS ROSS Thrust fault—Dotted where concealed volcanoes and Miocene and Qa Alluvium of valley bottoms (Holocene and Pleistocene) THRUST STRAIGHT (or) Pliocene gravel and breccia Kncs FAULT Chiwaukum Schist (Late Cretaceous) ROCKS OF Mount Baker (MB) at X and locally elsewhere) LAKE Robinson Mountain (RM) UNCONSOLIDATED DEPOSITS CASCADE MAGMATIC ARC Low-angle normal fault—Dotted where concealed Qu Alluvium (Holocene and Pleistocene) ROCKS IN WENATCHEE AND CHELAN BLOCKS Ma and Pliocene WELKER GHB Flood basalt Qt Talus deposits (Holocene and Pleistocene) Terrane overlap units and stitching plutons C Oligocene, Miocene, 1 Approximate age GLACIAL AND PK THRUST FAULT Antiformal fold axis and plunge—Dotted where TKsg Skagit Gneiss Complex (middle Eocene to Late Cretaceous) (millions of years) GLACIAL DEPOSITS NONGLACIAL DEPOSITS Geologic Age2 48°30’ concealed NONGLACIAL DEPOSITS ENTIAT Wi QTl Landslide deposits (Holocene, Pleistocene, and Pliocene?) CREEK Volcanic rocks Plutonic rocks QUATERNARY DARRINGTON AND TERTIARY TKso BP of the Cascade of theCascade Orthogneiss ZONE Magmatic Arc Magmatic Arc Qlh Lahars (Holocene and Pleistocene) Holocene Synformal fold axis and plunge—Dotted where 0.01 Qt Qlh T concealed TKsn Orthogneiss of The Needle Qa ROCKS OF LATE-
Recommended publications
  • USGS Geologic Investigations Series I-1963, Pamphlet
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-1963 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE SKYKOMISH RIVER 30- BY 60 MINUTE QUADRANGLE, WASHINGTON By R.W. Tabor, V.A. Frizzell, Jr., D.B. Booth, R.B. Waitt, J.T. Whetten, and R.E. Zartman INTRODUCTION From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The quadrangle straddles parts of two major river systems, the Skykomish and the Snoqualmie Rivers, which drain westward from the mountains to the lowlands (figs. 1 and 2). In the late 19th Century mineral deposits were discovered in the Monte Cristo, Silver Creek and the Index mining districts within the Skykomish River quadrangle. Soon after came the geologists: Spurr (1901) studied base- and precious- metal deposits in the Monte Cristo district and Weaver (1912a) and Smith (1915, 1916, 1917) in the Index district. General geologic mapping was begun by Oles (1956), Galster (1956), and Yeats (1958a) who mapped many of the essential features recognized today. Areas in which additional studies have been undertaken are shown on figure 3. Our work in the Skykomish River quadrangle, the northwest quadrant of the Wenatchee 1° by 2° quadrangle, began in 1975 and is part of a larger mapping project covering the Wenatchee quadrangle (fig. 1). Tabor, Frizzell, Whetten, and Booth have primary responsibility for bedrock mapping and compilation.
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • 1961 Climbers Outing in the Icefield Range of the St
    the Mountaineer 1962 Entered as second-class matter, April 8, 1922, at Post Office in Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and December by THE MOUNTAINEERS, P. 0. Box 122, Seattle 11, Wash. Clubroom is at 523 Pike Street in Seattle. Subscription price is $3.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of Northwest America; To make expeditions into these regions in fulfillment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor Zif e. EDITORIAL STAFF Nancy Miller, Editor, Marjorie Wilson, Betty Manning, Winifred Coleman The Mountaineers OFFICERS AND TRUSTEES Robert N. Latz, President Peggy Lawton, Secretary Arthur Bratsberg, Vice-President Edward H. Murray, Treasurer A. L. Crittenden Frank Fickeisen Peggy Lawton John Klos William Marzolf Nancy Miller Morris Moen Roy A. Snider Ira Spring Leon Uziel E. A. Robinson (Ex-Officio) James Geniesse (Everett) J. D. Cockrell (Tacoma) James Pennington (Jr. Representative) OFFICERS AND TRUSTEES : TACOMA BRANCH Nels Bjarke, Chairman Wilma Shannon, Treasurer Harry Connor, Vice Chairman Miles Johnson John Freeman (Ex-Officio) (Jr. Representative) Jack Gallagher James Henriot Edith Goodman George Munday Helen Sohlberg, Secretary OFFICERS: EVERETT BRANCH Jim Geniesse, Chairman Dorothy Philipp, Secretary Ralph Mackey, Treasurer COPYRIGHT 1962 BY THE MOUNTAINEERS The Mountaineer Climbing Code· A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress.
    [Show full text]
  • Kaiser Permanente CORE Provider List
    Core Plans Provider Directory Table of Contents Personal Physicians 1 (1926 Total) Specialty Care 27 (7979 Total) Behavioral Health Services 170 (2922 Total) Urgent Care 225 (85 Total) Hospitals 228 (69 Total) Pharmacies 231 (283 Total) Other Facilities 239 (848 Total) Kaiser Permanente Washington Medical Centers 261 (25 Total) Index 262 Contact Information back cover kp.org/wa | 1-888-901-4636 | All plans offered and underwritten by Kaiser Foundation Health Plan of Washington i Personal Physicians ADOLESCENT MEDICINE Skagit Regional Health - Arlington Family Bellingham Bay Family Medicine - cont. Medicine 722 N State St 7530 204th St NE (360) 752-2865 Olympia (360) 435-8810 Bowling, Sara Ashley, MD Chaffee, Charles T, MD Fox, Laura Vh, DO Kaiser Permanente Olympia Medical Center Evans, Sarah M, ARNP Hopper, James G, MD 700 Lilly Rd NE Lucianna, Mark A, MD O'Keefe, Karen Davis, MD (360) 923-7000 Schimke, Melana K, MD Skagit Regional Health - Arlington Pediatrics Van Hofwegen, Lisa Marie, MD 875 Wesley St Ste 130 Bellingham Family and Women's Health (360) 435-6525 1116 Key St Ste 106 Kraft, Kelli Malia, ARNP (360) 756-9793 Wood, Franklin Hoover, MD Whitehorse Family Medicine Kopanos, Taynin Kay, ARNP Sprague, Bonnie L, ARNP 875 Wesley St Ste 250 Spokane (360) 435-2233 Bellingham Family Medicine Fletcher, James Rodgers, MD MultiCare Rockwood Main 12 Bellwether Way Ste 230 Janeway, David W, MD (360) 738-7988 400 E 5th Ave Myren, Karen Sue, MD Nuetzmann, John S, DO (509) 838-2531 Carey, Alexandra S, MD Bellevue Fairhaven Family & Sports Medicine
    [Show full text]
  • Seattle the Potential for More Depth and Richness Than Any Other Culture I Can Think Of
    WWW.MOUNTAINEERS.ORG ANNUAL REPORT SPECIAL EDITION SPRING 2016 • VOLUME 110 • NO. 2 MountaineerEXPLORE • LEARN • CONSERVE The Doug Walker I Knew PAGE 12 Your Go-To Adventure Buddy PAGE 16 Leading the Way - Annual Report PAGES 19 - 40 Rescue on Dome Peak PAGE 41 2 mountaineer » spring 2016 tableofcontents Spring 2016 » Volume 110 » Number 2 Annual Report The Mountaineers enriches lives and communities by helping people explore, conserve, learn about and enjoy 19 Leading the Way the lands and waters of the Pacific Northwest and beyond. The Mountaineers Annual Report 2015 Features 12 The Doug Walker I knew a special tribute by Glenn Nelson 16 Your Go-To Adventure Buddy an interview with Andre Gougisha 41 Rescue on Dome Peak Everett Mountaineers save the day 16 Columns 6 PEAK FITNESS reducing knee pain 7 MEMBER HIGHLIGHT Tom Vogl 8 OUTDOOR EDUCATION from camper to pioneer 10 SAFETY FIRST VHF radios and sea kayaking 14 CONSERVATION CURRENTS our four conservation priorities 46 RETRO REWIND Wolf Bauer - a wonderful life 50 BRANCHING OUT your guide to the seven branches 52 GO GUIDE activities and courses listing 60 OFF BELAY 41 celebrating lives of cherished members 63 LAST WORD explore by Steve Scher Mountaineer magazine would like to thank The Mountaineers Foundation for its financial assistance. The Foundation operates as Discover The Mountaineers a separate organization from The Mountaineers, which has received about one-third of the Foundation’s gifts to various nonprofit If you're thinking of joining — or have joined and aren’t sure where organizations. to start — why not set a date to Meet The Mountaineers? Check the Branching Out section of the magazine for times and locations of Mountaineer uses: informational meetings at each of our seven branches.
    [Show full text]
  • Review Article Magma Loading in the Southern Coast Plutonic Complex, British Columbia and Washington
    GeoScienceWorld Lithosphere Volume 2020, Article ID 8856566, 17 pages https://doi.org/10.2113/2020/8856566 Review Article Magma Loading in the Southern Coast Plutonic Complex, British Columbia and Washington E. H. Brown Department of Geology, Western Washington University, USA Correspondence should be addressed to E. H. Brown; [email protected] Received 2 May 2020; Accepted 22 September 2020; Published 10 November 2020 Academic Editor: Tamer S. Abu-Alam Copyright © 2020 E. H. Brown. Exclusive Licensee GeoScienceWorld. Distributed under a Creative Commons Attribution License (CC BY 4.0). The southen end of the 1800 km long Coast Plutonic Complex (CPC), exposed in the Harrison Lake area of British Columbia and in the North Cascades of Washington, bears a record of great crustal thickening -20 to 40 km in localized zones during Late Cretaceous times. During this period, the CPC was positioned at the continental margin during collision/subduction of the Farallon plate. Arc magmatism and regional orogenic contraction were both active as potential crustal thickening processes. Magmatism is favored in this report as the dominant factor based on the delineation of four spatially and temporally separate loading events, the close association of the loaded areas with emplacement of large plutons, and a paucity of evidence of deep regional tectonic contraction. The timing and spatial location of crustal loading events are documented by the following: zircon ages in plutons; an early event of low pressure in pluton aureoles evidenced by andalusite, now pseudomorphed by high- pressure minerals; high pressures in country rock in pluton aureoles measured by mineral compositions in the assemblages garnet-biotite-muscovite-plagioclase and garnet-aluminum silicate-plagioclase; high pressures recorded in plutons by Al-in- hornblende barometry; and uplift ages of plutons derived from K-Ar and Ar-Ar ages of micas and hornblende in plutons.
    [Show full text]
  • Stratigraphy, Age, and Provenance of the Eocene Chumstick Basin
    Stratigraphy, age, and provenance of the Eocene Chumstick basin, Washington Cascades; implications for paleogeography, regional tectonics, and development of strike-slip basins Erin E. Donaghy1,†, Paul J. Umhoefer2, Michael P. Eddy1, Robert B. Miller3, and Taylor LaCasse4 1 Department of Earth, Planetary, and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, USA 2 School of Earth Sciences and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA 3 Department of Geology, San Jose State University, San Jose, California 95192, USA 4 Department of Geology, Carleton College, Northfield, Minnesota 55057 USA ABSTRACT tions can be constrained at high temporal Here we present a large provenance data set resolution (0.5–1.5 m.y. scale) for an ancient coupled with new lithofacies mapping from Strike-slip faults form in a wide variety strike-slip basin and permits a detailed re- the Chumstick basin within the framework of a of tectonic settings and are a first-order construction of sediment routing pathways recently developed precise depositional chronol- control on the geometry and sediment accu- and depositional environments. As a result, ogy (Eddy et al., 2016b). This basin formed in mulation patterns in adjacent sedimentary we can assess how varying sediment supply a strike-slip setting in central Washington and basins. Although the structural and depo- and accommodation space affects the depo- provides a unique opportunity to track changes sitional architecture of strike-slip basins is sitional architecture during strike-slip basin in sediment routing systems that are related well documented, few studies of strike-slip evolution. to rapidly changing paleogeography in basin- basins have integrated depositional age, bounding basement blocks.
    [Show full text]
  • Washington's Steepest Mountain Jz4:Ces
    14 Signpost April 1984 WASHINGTON'S STEEPEST MOUNTAIN JZ4:CES vertical drop (MVD) within these set Stephen Fry ACCURACY distances. The accuracy of the data is mainly Once measured, the MVD can be dependent on two factors: measurement used as a yardstick to compare the error and the reliability of the topo- maximum steepness of one mountain graphic maps. Most of the error intro- with another. duced into the MVD data originates The most accurate and detailed from the lack of perfectly accurate Mountains with precipitous faces maps available were used to determine topographic maps. are dramatic. Anyone who has walked the MVDs of the mountains listed. The total possible error for the the Cascade Pass Trail and viewed the In the United States, most of my United States MVD data in .1 mile ranges imposing north face of Johannesburg measurements were from current from 3% to 6%. The total possible Mountain can attest to that. Europeans 1:24,000 or 1:62,500 USGS topograph- error for the United States in 1 mile also have long admired and been im- ic maps. Around the world, the scale is likely no greater than 3%. pressed with the steep faces of peaks of maps varied from 1:25,000 for the For mountains outside the United such as the Matterhorn and Eiger. Matterhorn and Mount Everest, to States, the reliability of the topographic Ever since my first neck-stretching 1:250,000 for K2 and Annapurna I. maps varies greatly. Generally for views of Mount Index from the Stevens The process of measuring the most of the mountain faces I have listed, Pass Highway over twenty years ago, MVDs simply involves using a caliper the accuracy is the same as the United I have been intrigued with steep moun- or precise ruler as a gauge.
    [Show full text]
  • Map: Basement-Cover Relationships
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 • BASEMENT-COVER RELATIONSHIPS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 BASEMENT-COVER RELATIONSHIPS FLINN ET AL~g~ JOHNSTONE ET AL RATHBONE ~ HARRIS~'~ RAMSAY & STURT SANDERSi I & VAN BREEMEN BREWER ET AL" 0 km 100 I I WATSON & DUNNING- GENERAL REVIEW KENNAN ET AL-- PARATECTONIC IRELAND BAMFORD-- SEISMIC CONSTRAINTS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 The Caledonides of the British Isles--reviewed. 1979. Geological Society of London. Basement-cover relations in the British Caledonides Janet Watson & F. W. Dunning CONTENTS 1. Introduction 67 2. The Metamorphic Caledonides 68 a The Lewisian complex and related rocks 68 b Pre-Caledonian cover units 70 c Other possible basement units 72 d The Caledonian orogenic front 73 e Grenville activity in the northern Caledonian province 74 3. The Non-metamorphic Caledonides 76 a Basic facts relating to the belt in general 76 b The Midland Valley Transition Zone 77 c The Southern Uplands-Longford-Down-Clare Inliers Belt 83 d The Iapetus Suture 84 e The Lake District-Isle of Man-Leinster Belt 84 f The Irish Sea Horst 85 g The Welsh Basin and its eastern borders 85 h Eastern England 86 j The Midland Craton 86 4. Conclusions 87 5. Acknowledgements 88 6. References 88 1. Introduction underlying the Metamorphic Caledonides (which Although the conventional regional subdivi- consists mainly of gneisses) and that underlying sion of the British and Irish
    [Show full text]
  • THE PACIFIC NORTHWEST: WASHINGTON and ORGEGON PART 2 NORTH and MIDDLE CASCADES and NORTH CASCADES
    THE PACIFIC NORTHWEST: WASHINGTON AND ORGEGON PART 2 NORTH AND MIDDLE CASCADES and NORTH CASCADES Mt Baker Park Butte Mt Baker with my son Ethan Park Butte 2009 Hannigan Pass hike with my daughter clara Hannigan Pass 2017 with Clara, Right: Mt Shuksan and Price Glacier 2006 Philip and Ethan on the summit of Mt Ruth. Mt Shuksan in 2006 Mt Ruth climb with Ethan and Philip and in background Mt Shuksan 2006 Mt Shuksan climb I led from Lake Ann through the Fishure chimneys route 1981, right summit Above and below: Mt Shuksan climb 1981 Mt Shuksan I led with friends climb 1981 base camp at Lake Ann. Above and below Mt Baker climb 1968 with George Dalton Mt Baker from skyline 2014 with bekah, clara and ethan NORTH CASCADES Mt Eldorado and Sahale Arm, North Cascades Summit of Bostan Peak with Eric Pentila, 1966. Eric played center for the U of W footballs team Mt Eldado, climbed several times in one day ascents, 1968 and 1973 Above and Below: Summit pyramids of Mt Eldorado 1973 Inspiration glacier on mt Eldorado Dome Peak climb 1984 Dome Peak climb 1984 STEHEKIN AND HOLDEN VILLAGE Mountaineers Summer outing 1963 Park Creek Meadows and Mt Buckner. Summit of Mt Booker, Buckner Left Mt Booker with the summit of Mt Buckner to the right; Glacier Peak from High Pass to the south of Stehekin Buckner, Torment, Sahale and far right Mt Eldrado from summit of Mt Logan, Mountaineers Summer outing 1963 Lake Chelan, a 55 mile long lake that with the boat Lady of the Lake, took passengers to Lucerne, and Stehekin Holden Village reached from Lucerne and the Lake
    [Show full text]
  • Federal Register / Vol
    Wednesday, August 13, 2008 Part III Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Revised Designation of Critical Habitat for the Northern Spotted Owl; Final Rule VerDate Aug<31>2005 17:05 Aug 12, 2008 Jkt 214001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\13AUR2.SGM 13AUR2 rwilkins on PROD1PC63 with RULES_2 47326 Federal Register / Vol. 73, No. 157 / Wednesday, August 13, 2008 / Rules and Regulations DEPARTMENT OF THE INTERIOR Background habitat designation in the westside It is our intent to discuss only those provinces. The landscape management Fish and Wildlife Service topics directly relevant to the revised approach for the eastside provinces, designation of critical habitat in this identified in the 2008 final recovery 50 CFR Part 17 rule. For more information on the plan (USFWS 2008) and by the northern spotted owl and critical Sustainable Ecosystems Institute (SEI) [FWS-R1-ES-2008–0051; 92210-1117-0000- Scientific Panel (SEI 2008) as the most FY08-B4] habitat, please refer to the proposed rule published in the Federal Register on effective approach for managing RIN 1018-AU37 June 12, 2007 (72 FR 32450). northern spotted owl habitat in dry Prior and subsequent to the listing of forests, was not incorporated into this Endangered and Threatened Wildlife the northern spotted owl in 1990 (55 FR rule because it cannot be translated into and Plants; Revised Designation of 26114), many committees, task forces, critical habitat at this time, until the Critical Habitat for the Northern and work groups were formed to new approach called for by the recovery Spotted Owl develop conservation strategies for the plan is further defined.
    [Show full text]
  • Juan Gómez-Barreiro Dear Editor, Thanks for Your Message. It Is
    To Topical Editor: Juan Gómez-Barreiro Dear editor, Thanks for your message. It is rather unusual to receive a third revision from an editor, but we have tried to follow your last remarks. See below some explanations, because we have not properly understood some of your queries. A) It is not clear how the authors choose the studied areas in the Iberian Massif. A short description on these criteria could be very useful for the interested reader. The criteria for the selection of the targeted study areas was (and still is) explained at the end of the Introduction section. “Until now the Toledanian and Sardic magmatic events had been studied on different areas and interpreted separately, without taking into account their similarities and differences. In this work, the geochemical affinities of the Furongian–Early Ordovician (Toledanian) and Early–Late Ordovician (Sardic) felsic magmatic activities recorded in the Central Iberian and Galicia-Trás-os-Montes Zones, Pyrenees, Occitan Domain and Sardinia are compared. The re-appraisal is based on 17 new samples from the Pyrenees, Montagne Noire and Sardinia, completing the absence of analysis in these areas and wide- ranging a dataset of 93 previously published geochemical analyses throughout the study region in south-western Europe”. • Besides, according to up-to-date references (e.g. Martínez Catalán et al 2019; https://doi.org/10.1007/978-3-030-10519-8_4), the Cantabrian, Westasturian-Leonese and Central Iberian zones were part of the Gondwana margin at that time span (broadly autochthon), while in the Galicia -Trás-os-Montes zone (Allochthon), only those units below the Ophiolites are clearly of that affinity (Basal and Parautochthon units).
    [Show full text]