Demystifying Java Platform Security Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Demystifying Java Platform Security Architecture Demystifying Java Platform Security Architecture Ramesh Nagappan, CISSP [email protected] www.coresecuritypatterns.com Overall Presentation Goal Learn how to get started on using Java Platform and its core Security Mechanisms . • J2SE, J2ME, Java Card, Applets, Java Web start • Java Security Management tools • Securing Java Code from Decompilation www.coresecuritypatterns.com Presentation Outline ¾ Java Platform Security Architecture ¾ Java Applet Security ¾ Java Web Start Security (JNLP Security) ¾ Java Micro Edition (J2ME) Security Architecture ¾ Java Card Security Architecture ¾ Java Platform Security – Key and Certificate Management tools ¾ Securing the Java code from Decompilation www.coresecuritypatterns.com Java Platform Security Architecture www.coresecuritypatterns.com Basics about Java • Java Platform and its Programming language is introduced by Sun Microsystems during late 1995. – Invented by Dr.James Gosling at Sun Microsystems. • Java offers a object-oriented programming and platform- independent application development environment. – Java delivers a architecture neutral, interpreted and executable bytecode. – Java enables delivering portable cross-platform application solutions. – Java applications can be accessed locally or dynamically loaded from a network. – Java applications are capable of running on any device platform • From smartcards to micro-devices, workstations to enterprise servers, mainframes to supercomputers and so on. www.coresecuritypatterns.com Core Java Technologies • Sun Categorized the Java technologies under three key major editions. – Primarily to simplify software development and to support target deployment platform. – Java Standard Edition (also referred to a J2SE or JDK) • Commonly used as Java runtime environment (JRE) for running basic Java applications – Java Enterprise Edition (also referred to as J2EE or Java EE) • Set of standards and API technologies for developing multi-tier business applications. – Java Micro Edition (also referred to as J2ME or Java ME) • Set of standards and API technologies for Java enabled Micro-devices and embedded systems • Java Card is a sub-set of J2ME for supporting smartcards. www.coresecuritypatterns.com Java Security at the High-level • Security has been an integral part of Java technology from day one. – It has been an evolving design goal of the Java community as Java is primarily targeted to network-centric applications. • Java Security Architecture foundation provides a secure execution environment via: – The Java Virtual Machine (JVM) • The JVM defines a secure environment by enforcing stringent security measures for running Java applications – The Java Programming Language • The Java language provides several inherent features that ensures security and integrity of the Java application and its underlying JVM. www.coresecuritypatterns.com Security in Java Virtual Machine • The Java Virtual Machine (JVM) is an abstract computing engine – It resides on the host computer and serves as the execution environment for executing the compiled Java code. – The JVM insulates the Java application from underlying differences of the operating systems, networks and system hardware. • The JVM’s built-in security architecture protects the Java environment from most security breaches. – The JVM security architecture acts as a primary security layer by protecting users and the environment from malicious acts. – The JVM enforces security via configurable policies, access control mechanisms and security extensions. – The JVM also allows users to securely download and execute untrusted Java programs from remote resources and over the network. www.coresecuritypatterns.com Security in Java Language • The Java language is a general-purpose object-oriented programming language – It delivers platform-neutral compiled code that can be executed by a JVM. • The Java language is designed to provide security of the application and its underlying runtime environment. – The Java language assures security of the application at all levels • From the basic Java language constructs to the Java runtime • From the supporting Java class libraries to the Java application – The Java language also offers several inherent features that contributes to the security of the application. www.coresecuritypatterns.com Security features in Java Language • The key security features of the Java language that contributes to the security are: – Java defines all primitives with a specified size and all operations are defined to be executed in a specific order of execution. – Java language provides access control functionality on variables and methods in the object via namespace management for type and procedure. • Ex. public, private, protected, package etc. – Java language does not allow defining or de-referencing pointers. • Programmers cannot misuse or forge a pointer to the memory or create code defining offset points to memory. – Java object encapsulation supports “programming by contract” that allows reuse of the code that has already been tested. – Java is a strongly typed language – During compile time it does extensive type checking for type mismatches. www.coresecuritypatterns.com Security features in Java Language • Continued: – Java allows declaring classes or methods as final. • Helps to protect the code from malicious attacks via creating sub-classes and substituting it for the original class and override methods. – Java Garbage Collection mechanism contributes to security of Java programs • By providing a transparent storage allocation and recovering unused memory without manual intervention. • Ensures program integrity during execution and prevents programmatic access to accidental and incorrect freeing of memory resulting a JVM crash. www.coresecuritypatterns.com Java Platform Built-in Security • Java provides a built-in security architectural foundation as part of the JVM. – Based on configurable policies and domains – Rule based class loading – Signing code via support for cryptography services. – Allows implementing security policies • For protecting/controlling access to resources • Since inception : Java 1.0.x – Java introduced the notion of a Sandbox based security model – Java 1.0.x sandbox security model helps running all Java applications locally within the resources available to the JVM. • Protects downloaded Java applets cannot access or alter the user’s resources beyond the sandbox – Java 1.1.x introduced ‘signed applets’, which allowed downloading and executing applets as trusted code after verifying applet signer’s information. www.coresecuritypatterns.com JDK 1.1 Security Model www.coresecuritypatterns.com Java 2 Platform Security Model • Java 2 Platform (J2SE) introduced significant security enhancements to JDK 1.1.x. – Full-fledged support for cryptographic services – Tools for PKI management and digital certificates – Policy-driven restricted access control to JVM resources – Rule-based class loading and verification of bytecode – Policy driven access to Java applets downloaded by a Web browser • In J2SE Security architecture, all code can be subjected to a ‘Security Policy’ – regardless of running locally or downloaded remotely – All code can be configured to make use of a ‘Protection domain’ (equivalent to a sandbox) and a Security policy. – The Security policy dictates whether the code can be run on a particular protection domain or not. www.coresecuritypatterns.com J2SE Security Architecture Elements www.coresecuritypatterns.com J2SE Protection Domain • J2SE introduced the notion of “Protection Domains” , that allows to enforce access control policies. – Configuring a ‘Protection Domain’ allows grouping of classes and instances by associating them with a “Security policy” containing set of “Permissions”. – Protection domains are determined by the current security policy defined for a Java runtime environment. – The java.security.ProtectionDomain class encapsulates the characteristics of a Protection Domain. – With out defining a Protection Domain - by default all “local” Java applications run unrestricted as trusted applications • Protection Domains are generally categorized as two domains. – System Domain: All protected resources such as file systems, networks – Application Domain: The protected resources that are part of the single execution thread. www.coresecuritypatterns.com Permissions • ‘Permissions’ determine whether access to a resource of the JVM is granted or denied. – Permissions give specified resources or classes running in the instances of the JVM – the ability to permit or deny certain runtime operations. • For example: An applet or application using a Security Manager can obtain access to a system resource only if it has permissions. – The Java Security API defines a hierarchy of Permission classes. – The java.security.Permission is the abstract class that represents access to a target resource. – The Permission class contain several sub-classes to represent different type of permissions. • Example ‘Permission’ Classes – For wildcard permissions: java.security.AllPermission – For network permissions: java.net.SocketPermission – For file system permissions: java.io.FilePermission www.coresecuritypatterns.com Setting Permissions in a policy • ‘Permissions’ can be defined using a security policy configuration file. – If a caller application requires access to a file located in a file system. The caller application must have the permissions granted to access the file object. – For example, to grant access to read a file in “c:\temp”
Recommended publications
  • Jpype Documentation Release 0.7.0
    JPype Documentation Release 0.7.0 Steve Menard, Luis Nell and others Jul 22, 2019 Contents 1 Parts of the documentation 3 1.1 Installation................................................3 1.2 User Guide................................................6 1.3 QuickStart Guide............................................. 17 1.4 API Reference.............................................. 27 1.5 JImport.................................................. 34 1.6 Changelog................................................ 36 1.7 Developer Guide............................................. 40 2 Indices and tables 53 Python Module Index 55 Index 57 i ii JPype Documentation, Release 0.7.0 JPype is a Python module to provide full access to Java from within Python. It allows Python to make use of Java only libraries, exploring and visualization of Java structures, development and testing of Java libraries, scientific computing, and much more. By gaining the best of both worlds using Python for rapid prototyping and Java for strong typed production code, JPype provides a powerful environment for engineering and code development. This is achieved not through re-implementing Python, as Jython/JPython has done, but rather through interfacing at the native level in both virtual machines. This shared memory based approach achieves decent computing preformance, while providing the access to the entirety of CPython and Java libraries. Contents 1 JPype Documentation, Release 0.7.0 2 Contents CHAPTER 1 Parts of the documentation 1.1 Installation JPype is available either as a pre-compiled binary for Anaconda, or may be build from source though several methods. 1.1.1 Binary Install JPype can be installed as pre-compiled binary if you are using the Anaconda Python stack. Binaries are available for Linux, OSX, ad windows are available on conda-forge.
    [Show full text]
  • Chargeurs De Classes Java (Classloader)
    http://membres-liglab.imag.fr/donsez/cours Chargeurs de classes Java (ClassLoader) Didier Donsez Université Joseph Fourier - Grenoble 1 PolyTech’Grenoble - LIG/ADELE [email protected] [email protected] 06/06/2009 Licence Cette présentation est couverte par le contrat Creative Commons By NC ND http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Didier Donsez, 2002-2009, ClassLoaders Donsez,2002-2009, Didier 2 06/06/2009 Kequoi ca un chargeur de classes ? Son rôle est 1) de charger le bytecode d’une classe depuis un artéfact (archive Java, répertoire distant …) 2) communiquer le bytecode à la machine virtuelle Didier Donsez, 2002-2009, ClassLoaders Donsez,2002-2009, Didier 4 06/06/2009 Pourquoi utiliser les chargeurs de classes Classes non présentes dans le CLASSPATH URLClassLoader, AppletClassLoader, … ex: WEB-INF/classes et WEB-INF/lib d’une WebApp ex: CODEBASE d’une applet, … Déchargement et Mise à jour du bytecode lors de l’exécution de la VM (runtime) Chargeurs de OSGi Modification du ByteCode à la volée au chargement Instrumentation AOP (Aspect Oriented Programming) BCEL, ASM Protection Chargement de ressources associées à la classe properties, images, … Recherche de Service Providers ou de Drivers META-INF/services (java.util.ServiceLoader de 6.0) Didier Donsez, 2002-2009, ClassLoaders Donsez,2002-2009, Didier 5 06/06/2009 Principe de la délégation (Java 2) Tout chargeur a un chargeur parent sauf le chargeur primordial Tout chargeur vérifie si la classe à charger n’a pas déjà été chargée par un chargeur
    [Show full text]
  • How Java Works JIT, Just in Time Compiler Loading .Class Files The
    How Java works JIT, Just In Time Compiler ● The java compiler takes a .java file and generates a .class file ● JVM ultimately translates bytecode into native code, each time ➤ The .class file contains Java bytecodes, the assembler the same bytecodes are processed, the translation into native language for Java programs code must be made ➤ Bytecodes are executed in a JVM (java virtual machine), ➤ If we can cache translated code we can avoid re-translating the valid bytecodes are specified by Sun the same bytecode sequence • What if third parties create platform/OS specific codes? ➤ Why not just translate the entire .java program into native code? ● The JVM interprets the bytecodes ➤ JVM is platform/OS specific, must ultimately run the code ● Still need the JVM, the JIT works in conjunction with the JVM, not in place of it ➤ Different JVMs will have different performance, JITs are part of the overall JDK/Java performance ● How are classes loaded into the JVM? Can this be thwarted? Duke CPS 108 14.1 Duke CPS 108 14.2 Loading .class files The ClassLoader ● The bytecode verifier “proves theorems” about the bytecodes ● The “Primordial” loader is built-in to the JVM being loaded into the JVM ➤ Sometimes called the “default” loader, but it’s not ➤ These bytecodes may come from a non-Java source, e.g., extensible or customizable the way other loaders are compile Ada into bytecodes (why?) ➤ Loads classes from the platform on which the JVM runs ● This verification is a static analysis of properties such as: (what are loader and JVM written in?) ➤
    [Show full text]
  • An Empirical Evaluation of Osgi Dependencies Best Practices in the Eclipse IDE Lina Ochoa, Thomas Degueule, Jurgen Vinju
    An Empirical Evaluation of OSGi Dependencies Best Practices in the Eclipse IDE Lina Ochoa, Thomas Degueule, Jurgen Vinju To cite this version: Lina Ochoa, Thomas Degueule, Jurgen Vinju. An Empirical Evaluation of OSGi Dependencies Best Practices in the Eclipse IDE. 15th International Conference on Mining Software Repositories, May 2018, Gothenburg, Sweden. 10.1145/3196398.3196416. hal-01740131 HAL Id: hal-01740131 https://hal.archives-ouvertes.fr/hal-01740131 Submitted on 27 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An Empirical Evaluation of OSGi Dependencies Best Practices in the Eclipse IDE Lina Ochoa Thomas Degueule Jurgen Vinju Centrum Wiskunde & Informatica Centrum Wiskunde & Informatica Centrum Wiskunde & Informatica Amsterdam, Netherlands Amsterdam, Netherlands Amsterdam, Netherlands [email protected] [email protected] Eindhoven University of Technology Eindhoven, Netherlands [email protected] ABSTRACT that can be implemented and tested independently. This also fos- OSGi is a module system and service framework that aims to fill ters reuse by allowing software components to be reused from one Java’s lack of support for modular development. Using OSGi, devel- system to the other, or even to be substituted by one another pro- opers divide software into multiple bundles that declare constrained vided that they satisfy the appropriate interface expected by a client.
    [Show full text]
  • Kawa - Compiling Dynamic Languages to the Java VM
    Kawa - Compiling Dynamic Languages to the Java VM Per Bothner Cygnus Solutions 1325 Chesapeake Terrace Sunnyvale CA 94089, USA <[email protected]> Abstract: in a project in conjunction with Java. A language im- plemented on top of Java gives programmers many of Many are interested in Java for its portable bytecodes the extra-linguistic benefits of Java, including libraries, and extensive libraries, but prefer a different language, portable bytecodes, web applets, and the existing efforts especially for scripting. People have implemented other to improve Java implementations and tools. languages using an interpreter (which is slow), or by translating into Java source (with poor responsiveness The Kawa toolkit supports compiling and running vari- for eval). Kawa uses an interpreter only for “simple” ous languages on the Java Virtual Machine. Currently, expressions; all non-trivial expressions (such as function Scheme is fully supported (except for a few difficult fea- definitions) are compiled into Java bytecodes, which are tures discussed later). An implementation of ECMA- emitted into an in-memory byte array. This can be saved Script is coming along, but at the time of writing it is for later, or quickly loaded using the Java ClassLoader. not usable. Kawa is intended to be a framework that supports mul- Scheme [R RS] is a simple yet powerful language. It tiple source languages. Currently, it only supports is a non-pure functional language (i.e. it has first-class Scheme, which is a lexically-scoped language in the Lisp functions, lexical scoping, non-lazy evaluation, and side family. The Kawa dialect of Scheme implements almost effects).
    [Show full text]
  • Components: Concepts and Techniques
    Software Engineering 2005 Components: Concepts and Techniques Martin Bravenboer Department of Information and Computing Sciences Universiteit Utrecht [email protected] October 19, 2005 1 Concepts 2 Component-based Software Engineering Developing a software system from prefabricated parts • From custom-made to standard software • Required in all industries • No replication: different configurations • Cross-cuts the software engineering: – Requirements, deployment, versioning, configuration, building, maintenance, architecture, design • Aspects: both technical and market-related – Time to market, competitiveness. – Stimulation of marketplace 3 Dreaming in Components • Maturity of software engineering • Components of different vendors working together – Requires protocols between components • Marketplace – Sell components – Provide services – Infrastructure – Service provider • Reduce need for skilled system programmers – Component architects, assemblers Has taken almost 40 years to take off! 4 Components according to Czarnecki “Building blocks from which different software systems can be composed.” • Component is a natural concept – Not constructed, artificial – Definition is futile. • Component is part of a production process • What a component is, depends on the production process. – e.g. not necessarily binary Economic pressure towards standardized solutions 5 Components according to Szyperski Very strict definition of software component 1. Unit of composition 2. Unit of independent deployment 3. Contractually specified interfaces • Deployment,
    [Show full text]
  • Towards Integrating Modeling and Programming Languages: the Case of UML and Java⋆
    Towards Integrating Modeling and Programming Languages: The Case of UML and Java? Patrick Neubauer, Tanja Mayerhofer, and Gerti Kappel Business Informatics Group, Vienna University of Technology, Austria {neubauer, mayerhofer, gerti}@big.tuwien.ac.at Abstract. Today, modeling and programming constitute separate activities car- ried out using modeling respectively programming languages, which are neither well integrated with each other nor have a one-to-one correspondence. As a con- sequence, platform and implementation details, such as the usage of existing software components and libraries, are usually introduced on code level only. This impedes accurate model-level analyses that take platform-specific decisions into account as well as the direct deployment of executable models on the target platform. In this work we present an approach for integrating existing software libraries with fUML models—an executable variant of UML models for which a standardized virtual machine exists—not only at design time but also at runtime. As a result of that, the modeler is empowered with the capabilities provided by existing software libraries on model level. Our approach is evaluated based on unit tests and initial case studies available in the ReMoDD repository that assess the correctness, performance, and completeness of our implementation. 1 Introduction Back in 1966, the first object-oriented programming language was born. Its name is SIMULA and it combined modeling and programming in a unified approach, that is one of the strengths provided by object-orientation [4]. Carrying this idea further, the language BETA, which was developed based on SIMULA and DELTA, was designed for supporting both designing and programming systems.
    [Show full text]
  • Analysing Class Loading Conflicts on Weblogic
    Class Loading Conflicts in JVM This guide shows how to analyze and avoid potential problems caused by class loading conflicts. The content is structured in the following sections, the first one gives a little introduction to the Classloader model in Weblogic [1], following the installation of Classloader Analysis Tool (CAT) [1] is shown and then two examples that shows the use of CAT on a real application is presented. Class loading in Weblogic Summarizing the class loading process in just some lines is hard so in this guide the focus is talking about hierarchies and the delegation model. Concept Definition Hierarchies The classloader in an application server such as Weblogic is based on the model defined by the JVM, which means a hierarchical model that on Weblogic is organized as a tree with these levels: bootstrap class loader, extension class loader, system classpath classloader, application specific classloaders (this includes Weblogic server) [1]. In the previous tree, bootstrap class loader is the root and application specific classloaders are the leaves [1]. Delegation model A common question that arises when Java application servers are used is why is my application using the wrong class? This is because the delegation model, which states “The classloader implementation first checks its cache to see if the requested class has already been loaded. This class verification improves performance in that its cached memory copy is used instead of repeated loading of a class from disk. If the class is not found in its cache, the current classloader asks its parent for the class. Only if the parent cannot load the class does the classloader attempt to load the class.
    [Show full text]
  • Understanding the Java Classloader Skill Level: Introductory
    Understanding the Java ClassLoader Skill Level: Introductory Greg Travis ([email protected]) Programmer 24 Apr 2001 This tutorial provides an overview of the Java ClassLoader and takes you through the construction of an example ClassLoader that automatically compiles your code before loading it. You'll learn exactly what a ClassLoader does, and what you need to do to create your own. Section 1. Tutorial tips Should I take this tutorial? The Java ClassLoader is a crucial, but often overlooked, component of the Java run-time system. It is the class responsible for finding and loading class files at run time. Creating your own ClassLoader lets you customize the JVM in useful and interesting ways, allowing you to completely redefine how class files are brought into the system. This tutorial provides an overview of the Java ClassLoader and takes you through the construction of an example ClassLoader that automatically compiles your code before loading it. You'll learn exactly what a ClassLoader does and what you need to do to create your own. A basic understanding of Java programming, including the ability to create, compile, and execute simple command-line Java programs, as well as an understanding of the class file paradigm is sufficient background to take this tutorial. Upon completion of this tutorial, you will know how to: Understanding the Java ClassLoader © Copyright IBM Corporation 1994, 2005. All rights reserved. Page 1 of 19 developerWorks® ibm.com/developerWorks • Expand the functionality of the JVM • Create a custom ClassLoader • Learn how to integrate a custom ClassLoader into your Java application • Modify your ClassLoader to accommodate the Java 2 release Section 2.
    [Show full text]
  • Supporting Resource Awareness in Managed Runtime Environment Inti Yulien Gonzalez Herrera
    Supporting resource awareness in managed runtime environment Inti Yulien Gonzalez Herrera To cite this version: Inti Yulien Gonzalez Herrera. Supporting resource awareness in managed runtime environment. Soft- ware Engineering [cs.SE]. Université Rennes 1, 2015. English. NNT : 2015REN1S090. tel-01308660 HAL Id: tel-01308660 https://tel.archives-ouvertes.fr/tel-01308660 Submitted on 28 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2015 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Informatique École doctorale Matisse présentée par Inti Yulien GONZALEZ HERRERA préparée à l’unité de recherche INRIA Rennes Bretagne Atlantique Thèse soutenue à Rennes Supporting le 14 Décembre 2015 devant le jury composé de : Vivien QUÉMA resource awareness LIG laboratory – Grenoble INP/ENSIMAG / Rapporteur Gilles MULLER in managed runtime Whisper team – LIP6 / Rapporteur Gaël THOMAS environments. Samovar Laboratory – Telecom SudParis / Examinateur Laurent RÉVEILLÈRE LaBRI – Université de Bordeaux / Examinateur Isabelle PUAUT IRISA – Université de Rennes 1 / Examinatrice Olivier BARAIS Professor, IRISA – Université de Rennes 1 / Directeur de thèse Johann BOURCIER Maître de conférences, IRISA – Université de Rennes 1 / Co-directeur de thèse Hay una historia familiar que me impactó muchísimo.
    [Show full text]
  • CICS JVM Server Application Isolation
    CICS JVM Server Application Isolation Masterarbeit Lehrstuhl für Technische Informatik Wilhelm-Schickard-Institut für Informatik Mathematisch-Naturwissenschaftliche Fakultät Universität Tübingen Dipl.-Ing. (FH) Robert Harbach Betreuer: Prof. Dr.-Ing. Wilhelm G. Spruth Tag der Anmeldung: 1. Oktober 2011 Tag der Abgabe: 30. März 2012 Executive Summary The Java Virtual Machine (JVM) is able to host multiple simultaneously execut- ing transaction programs. Since a JVM is not capable to provide full application isolation however, the common practice found in most Java application servers implies to run one JVM per program. Due to the fact, that this implies an overhead of computational resources, several, most often proprietary, solutions for application isolation in JVMs have been proposed in the past. This paper outlines isolation properties of a new Java Virtual Machine (JVM) type, called a JVM Server, which implements the OSGi framework, and is in- tegrated into the System z architecture Customer Control Information System (CICS). It is shown that this approach resolves two application isolation issues: The CICS environment enables transaction safe execution of tasks. In addition, inclusion of the OSGi Framework provides namespace isolation based on class loading. However, several issues remain unsolved. They arise from the use of Java system classes, OSGi specific functions, resource exhaustion, and the use of the Java Native Interface (JNI). This paper proposes solutions to these isolation exposures. Some employ func- tions of the OSGi security layer. Others utilise existing CICS services for pro- gram control which would have to be implemented differently on other Java Transaction Servers. 1 Erklärung Hiermit bestätige ich, dass ich diese Masterarbeit selbstständig und nur mit Hilfe der angegebenen Quellen und Hilfsmittel verfasst habe.
    [Show full text]
  • How Java Works
    How Java works ● The java compiler takes a .java file and generates a .class file ➤ The .class file contains Java bytecodes, the assembler language for Java programs ➤ Bytecodes are executed in a JVM (java virtual machine), the valid bytecodes are specified by Sun • What if third parties create platform/OS specific codes? ● The JVM interprets the bytecodes ➤ JVM is platform/OS specific, must ultimately run the code ➤ Different JVMs will have different performance, JITs are part of the overall JDK/Java performance Duke CPS 108 14.1 JIT, Just In Time Compiler ● JVM ultimately translates bytecode into native code, each time the same bytecodes are processed, the translation into native code must be made ➤ If we can cache translated code we can avoid re-translating the same bytecode sequence ➤ Why not just translate the entire .java program into native code? ● Still need the JVM, the JIT works in conjunction with the JVM, not in place of it ● How are classes loaded into the JVM? Can this be thwarted? Duke CPS 108 14.2 Loading .class files ● The bytecode verifier “proves theorems” about the bytecodes being loaded into the JVM ➤ These bytecodes may come from a non-Java source, e.g., compile Ada into bytecodes (why?) ● This verification is a static analysis of properties such as: ➤ .class file format (including magic number 0xCAFEBABE) ➤ Methods/instances used properly, parameters correct ➤ Stack doesn’t underflow/overflow ➤ … ● Verification is done by the JVM, not changeable as is, for example, the ClassLoader http://securingjava.com http://java.sun.com/sfaq/verifier.html
    [Show full text]