Aalborg Universitet a Novel Single Pass Authenticated Encryption
Total Page:16
File Type:pdf, Size:1020Kb
Aalborg Universitet A Novel Single Pass Authenticated Encryption Stream Cipher for Software Defined Radios Khajuria, Samant Publication date: 2012 Document Version Early version, also known as pre-print Link to publication from Aalborg University Citation for published version (APA): Khajuria, S. (2012). A Novel Single Pass Authenticated Encryption Stream Cipher for Software Defined Radios. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: December 26, 2020 A Novel Single Pass Authenticated Encryption Stream Cipher for Software Defined Radios A DISSERTATION SUBBMITTED TO THE DEPARTMENT OF ELECRONIC SYSTEMS OF AALBORG UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Samant Khajuria Center for Wireless Systems and Applications Center for TeleInFrastruktur – Copenhagen Dept. of Electronic Systems AAU Supervisor: Professor Ramjee Prasad, CTIF, Aalborg University, Denmark Professor Birger Andersen, CWSA-CTIF, Copenhagen University College of Engineering, Denmark The examination committee: Moderator: Date of defense: ISSN: ***_**** ISBN: **_****_***_* Copyright © 2012 by Samant Khajuria All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the author. ii Abstract With the rapid growth of new wireless communication standards, a solution that is able to provide a seamless shift between existing wireless protocols and high flexibility as well as capacity is crucial. Software Defined Radio (SDR) technology offers this flexibility. It gives the possibility of adapting the radio to users’ preferences and the operating environment and supporting multiple standards without requiring separate hardware for each standard. In order to avail this enabling technology that is applicable across a wide range of areas within the wireless infrastructure, these radios have to propose cryptographic services such as confidentiality, integrity and authentication. Therefore, integration of security services into SDR devices is essential. Authenticated Encryption schemes donate the class of cryptographic algorithms that are designed for protecting both message confidentiality and its authenticity. Traditionally, authenticated encryption was achieved by using two independent algorithms for encryption and authentication. For past few years, new modes of operation of block cipher have been developed that allow us to use one algorithm for encryption as well as authentication. This makes authenticated encryption very attractive for low-cost low-power hardware implementations, as it allows for the substantial decrease in the circuit area and power consumed compared to the traditional schemes. In this thesis, an authenticated encryption scheme is proposed with the focus of achieving high throughput and low overhead for SDRs. The thesis is divided into two research topics. One topic is the design of a 1-pass authenticated encryption scheme that can accomplish both message secrecy and authenticity in a single cryptographic primitive. The other topic is the implementation of this design on re-configurable hardware in SDRs by closely observing the trade-off between area/throughput performance parameters. For test and performance evaluation the design has been implemented in Xilinx Spartan – 3 sxc3s700an FPGA. The resulting implementation consumes moderate number of slices on FPGA and achieves throughput in the range of 0.8 Gbps which can be suitably used for SDR applications. Comparing with traditional two pass approaches, the presented design demonstrates high throughput and small area to performance ratio. iii iv Dansk Resume Med den hurtige vækst i nye trådløse kommunikationsstandarder, er en løsning, der er i stand til at levere et problemfrit skifte mellem eksisterende trådløse protokoller og høj fleksibilitet samt kapacitet afgørende. Software Defined Radio (SDR) teknologi tilbyder denne fleksibilitet. Det giver mulighed for at tilpasse radioen til brugernes præferencer og driftsmiljøet og understøtte flere standarder uden at kræve separat hardware for hver standard. For at kunne benytte denne teknologi, der kan anvendes på tværs af en lang række områder indenfor trådløse infrastruktur, er disse radioer nødt til at tilbyde kryptografiske tjenester såsom fortrolighed, integritet og autentificering. Derfor er integration af sikkerhedstjenester i SDR-enheder af afgørende betydning. Autentificeret krypteringsmetoder tilhører klassen af kryptografiske algoritmer, der er designet til at beskytte både besked fortrolighed og dens ægthed (autensitet). Traditionelt blev autentificeret kryptering opnået ved hjælp af to uafhængige algoritmer til kryptering og autentificering. De sidste få år er nye former for blokalgoritmer blevet udviklet, som giver os mulighed for at bruge samme algoritme til kryptering samt autentificering. Dette gør autentificeret kryptering meget attraktivt for billige energibesparende hardware implementeringer, da det giver mulighed for betydelig reduktion af kredsløbets omfang og strømforbruget sammenlignet med traditionelle metoder. I denne afhandling er foreslået en autentificeret krypteringsmetode med fokus på at opnå høj kapacitet og lavt overhead for SDR. Afhandlingen er opdelt i to forskningsområder. Det ene er udformningen af en 1-passage autentificeret krypteringsmetode, der kan benyttes til både hemmeligholdelse og autenticitet vha. et enkelt kryptografisk primitiv. Det andet område er implementering af dette design på rekonfigurérbar hardware i SDR ved nøje at observere trade-off mellem kredsløbets omfang og kapacitets præstationsparametre. For test og evaluering er designet blevet implementeret i Xilinx Spartan - 3 sxc3s700an FPGA. Den resulterende implementering forbruger moderat antal slices på FPGA og opnår kapacitet i området ca. 0,8 Gbps, som kan være passende for SDR applikationer. I sammenligning med traditionelle to passage metoder demonstrerer det præsenterede design høj kapacitet og lille kredsløbsomfang. som ydelsesforhold. v vi Acknowledgements I would like to take the opportunity to thank the people who supported and accompanied me during my PhD studies. First and foremost I would like to thank my supervisors Prof. Ramjee Prasad and Prof. Birger Andersen for all the support and feedback, without which I would not have been able to complete my research work and write my thesis. I would also like to thank Prof. Rajarathnam Chandramouli and Goce Jakimoski for giving me the opportunity to work under their guidance in which they gave me their expertise and timely advices during my research at Stevens Institute of Technology. I would like to thank Center for Wireless Systems and Applications (CWSA) for sponsoring first year of my research. Next, I would like to thank my colleagues, the current once and the ones that have already gone from CWSA. I have always appreciated their precious feedback and long discussions with them about my research. I would also like to thank John Kryger Sørensen for his support and guidance. I would also like to thank Susanne Nørrevang and Inga Hauge for their help during my travels. Last, I would like to thank my friends and family for all their unconditionally support during my PhD Thank you all vii viii Table of Contents List of Figures ………………………………………………………………………….xii List of Tables …………………………………………………………………………...xiv List of Acronyms ……………………………………………………………………....xv 1 Introduction ……………………………………………………………………………… 1 1.1 Software Defined Radio …………………………………………………………….1 1.1.1 Cognitive Radio …………………………………………………………3 1.1.2 Field Programmable Gate Arrays / System on Chip …………………….5 1.2 Need for Security …………………………………………………………………..5 1.2.1 FPGAs for Cryptographic Application ………………………………….6 1.2.2 Attacks on FPGA ………………………………………………………..8 1.3 Confidentiality and Authenticity ………………………………………………….10 1.4 Motivation …………………………………………………………………………11 1.5 Problem Definition ………………………………………………………………...12 1.6 Limitations ………………………………………………………………………... 13 1.7 Contribution ………………………………………………………………………..13 1.8 Organization ………………………………………………………………………. 14 References …………………………………………………………………………….. 17 Part I – Algorithm Analysis & Development 2 Cryptography ……………………………………………………………………………..21 2.1 Symmetric Encryption ……………………………………………………………. 22 2.2 Block Ciphers ……………………………………………………………………... 24 2.2.1 Advanced Encryption Standard ……………………………………….. 28 2.3 Stream Ciphers ……………………………………………………………………. 31 2.3.1 Synchronous Stream Cipher …………………………………………... 33 2.3.2 Self-Synchronizing Stream Cipher …………………………………….34 ix 2.4 Authentication ……………………………………………………………………..34 2.4.1 Cryptographic