Quantum Electronics in Semiconductors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Intuitive Equivalent Circuit Model for Multilayer Van Der Waals Heterostructures Abhinandan Borah, Punnu Jose Sebastian, Ankur Nipane, and James T
1 An Intuitive Equivalent Circuit Model for Multilayer van der Waals Heterostructures Abhinandan Borah, Punnu Jose Sebastian, Ankur Nipane, and James T. Teherani Abstract—Stacks of 2D materials, known as van der Waals (vdW) heterostructures, have gained vast attention due to their Layer 1 interesting electrical and optoelectronic properties. This paper Dielectric 1 1 presents an intuitive circuit model for the out-of-plane electrostat- Layer 2 � ics of a vdW heterostructure composed of an arbitrary number of Dielectric 2 2D material / layers of 2D semiconductors, graphene, or metal. We explain the mapping between the out-of-plane energy-band diagram and the � metal elements of the equivalent circuit. Though the direct solution of n dielectric the circuit model for an -layer structure is not possible due to the Dielectric variable, nonlinear quantum capacitance of each layer, this work uses the intuition gained from the energy-band picture to provide Layer Dielectric � − an efficient solution in terms of a single variable. Our method �−1 employs Fermi-Dirac statistics while properly modeling the finite Layer � − � density of states (DOS) of 2D semiconductors and graphene. � − The approach circumvents difficulties that arise in commercial � �� TCAD tools, such as the proper handling of the 2D DOS and the simulation boundary conditions when the structure terminates Fig. 1. An n-layer vdW heterostructure with voltages applied to each layer. with a nonmetallic material. Based on this methodology, we have developed 2dmatstacks, an open-source tool freely available on nanohub.org. Overall, this work equips researchers to analyze, understand, and predict experimental results in complicated vdW [11], [13], [21]. -
Kondo Effect in Mesoscopic Quantum Dots
1 Kondo Effect in Mesoscopic Quantum Dots M. Grobis,1 I. G. Rau,2 R. M. Potok,1,3 and D. Goldhaber-Gordon1 1 Department of Physics, Stanford University, Stanford, CA 94305 2 Department of Applied Physics, Stanford University, Stanford, CA 94305 3 Department of Physics, Harvard University, Cambridge, MA 02138 Abstract A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduction electrons. Nearly a decade ago, the Kondo effect was observed in a new system, in which the magnetic moment stems from a single unpaired spin in a lithographically defined quantum dot, or artificial atom. The discovery of the Kondo effect in artificial atoms spurred a revival in the study of Kondo physics, due in part to the unprecedented control of relevant parameters in these systems. In this review we discuss the physics, origins, and phenomenology of the Kondo effect in the context of recent quantum dot experiments. After a brief historical introduction (Sec. 1), we first discuss the spin-½ Kondo effect (Sec. 2) and how it is modified by various parameters, external couplings, and non-ideal conduction reservoirs (Sec. 3). Next, we discuss measurements of more exotic Kondo systems (Sec. 4) and conclude with some possible future directions (Sec. 5). Keywords Kondo effect, quantum dot, single-electron transistor, mesoscopic physics, Anderson model, Coulomb blockade, tunneling transport, magnetism, experimental physics 2 1 Introduction At low temperatures, a small concentration of magnetic impurities — atoms or ions with a non-zero magnetic moment — can dramatically affect the behavior of conduction electrons in an otherwise pure metal. -
Large Capacitance Enhancement in 2D Electron Systems Driven by Electron Correlations
Large capacitance enhancement in 2D electron systems driven by electron correlations Brian Skinner, University of Minnesota with B. I. Shklovskii May 4, 2013 Capacitance as a thermodynamic probe The differential capacitance material of interest V insulator contains information about thermodynamic properties metal electrode Correlated and quantum behavior can have dramatic manifestations in the capacitance. Thermodynamic definition of C Capacitance is determined by the total energy U(Q) -Q V +Q electrons Define the “effective capacitor thickness”: 2 2 d* = ε0ε/C = ε0ε (d U/dQ ) Thermodynamic definition of C 2D material with electron density n chemical potential μ -Q d d * d 0 V e2 dn +Q 1 1 1 C Cg Cq Quantum capacitance in 2D (Noninteracting) 2DEG with parabolic spectrum: dn const. m /2 d * d a / 4 d B graphene: 1/ 2 1/ 2 n Cq n n1/ 2 d * d 8 [Ponomarenko et. al., PRL 105, 136801 (2010)] -1 Electron correlations can make Cq large and negative, so that C >> Cg and d* << d In the remainder of this talk: 1. A 2D electron gas next to d a metal electrode V 2. Monolayer graphene in a strong magnetic field 2’. Double-layer graphene Large capacitance in a capacitor 1. with a conventional 2DEG A clean, gated 2DEG at zero temperature: electron density n(V) d 2DEG insulator V metal gate electrode What is d* = ε0ε/C as a function of n? Semiclassical scaling behavior -1/2 The problem has three length scales: d, aB << d, and n -1/2 case 1: n << aB 2DEG E d 2DEG is a degenerate Fermi gas ++++++++++++++++++++ metal d* = d + aB/4 Semiclassical scaling behavior -1/2 The problem has three length scales: d, aB << d, and n -1/2 -1/2 ~ n case 2: aB << n << d 2DEG Electrons undergo crystallization: E 2 1/2 2 ++++++++++++++++++++ e n /ε0ε >> h n/m metal electron repulsion >> kinetic energy Wigner crystal has negative density of states: d µ ~ -e2n1/2/ε ε d * d 0 0 e2 dn d* = d – 0.12 n-1/2 < d [Bello, Levin, Shklovskii, and Efros, Sov. -
Lateral Quantum Dots for Quantum Information Processing
University of California Los Angeles Lateral Quantum Dots for Quantum Information Processing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Matthew Gregory House 2012 c Copyright by Matthew Gregory House 2012 Abstract of the Dissertation Lateral Quantum Dots for Quantum Information Processing by Matthew Gregory House Doctor of Philosophy in Physics University of California, Los Angeles, 2012 Professor Hong Wen Jiang, Chair The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot. -
Hole Spins in an Inas/Gaas Quantum Dot Molecule Subject to Lateral Electric fields
PHYSICAL REVIEW B 93, 245402 (2016) Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields Xiangyu Ma,1 Garnett W. Bryant,2 and Matthew F. Doty1,3,* 1Dept. of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA 2Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899-8423, USA 3Dept. of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA (Received 12 February 2016; revised manuscript received 3 May 2016; published 3 June 2016) There has been tremendous progress in manipulating electron and hole-spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically stacked InAs/GaAs QDMs using atomistic tight-binding simulations. We systematically investigate QDMs with different geometric structure parameters and local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that lateral electric fields induce hole-spin mixing with a magnitude that increases with increasing lateral electric field over a moderate range. These results suggest that applied lateral electric fields could be used to fine tune and manipulate, in situ, the energy levels and spin properties of single holes confined in QDMs. DOI: 10.1103/PhysRevB.93.245402 I. -
Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha
Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha B.A. in Physics and Math, University of Chicago, 2001 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author............................................... ............... Department of Physics December 11, 2007 Certified by........................................... ............... Marc A. Kastner Donner Professor of Physics and Dean of the School of Science Thesis Supervisor Accepted by........................................... .............. Thomas J. Greytak Professor and Associate Department Head for Education 2 Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha Submitted to the Department of Physics on December 11, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We report measurements that use real-time charge sensing to probe a single-electron lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent to the dot and the sensitivity is comparable to other QPC-based systems. We develop an automated feedback system to position the energies of the states in the dot with respect to the Fermi energy of the leads. We also develop a triggering system to identify electron tunneling events in real-time data. Using real-time charge sensing, we measure the rate at which an electron tun- nels onto or off of the dot. In zero magnetic field, we find that these rates depend exponentially on the voltages applied to the dot. We show that this dependence is consistent with a model that assumes elastic tunneling and accounts for the changes in the energies of the states in the dot relative to the heights of the tunnel barriers. -
Exciton Fine-Structure Splitting in Self-Assembled Lateral Inas/Gaas
Exciton Fine-Structure Splitting in Self- Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures Stanislav Filippov, Yuttapoom Puttisong, Yuqing Huang, Irina A Buyanova, Suwaree Suraprapapich, Charles. W. Tu and Weimin Chen Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Stanislav Filippov, Yuttapoom Puttisong, Yuqing Huang, Irina A Buyanova, Suwaree Suraprapapich, Charles. W. Tu and Weimin Chen, Exciton Fine-Structure Splitting in Self- Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures, 2015, ACS Nano, (9), 6, 5741-5749. http://dx.doi.org/10.1021/acsnano.5b01387 Copyright: American Chemical Society http://pubs.acs.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118007 1 Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures Stanislav Fillipov,1,† Yuttapoom Puttisong,1, † Yuqing Huang,1 Irina A. Buyanova,1 Suwaree Suraprapapich,2 Charles W. Tu2 and Weimin M. Chen1,* 1Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping, Sweden 2Department of Electrical and Computer Engineering, University of California, La Jolla, CA 92093, USA ABSTRACT Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized lateral InAs/GaAs quantum-dot molecular structures (QMSs) including laterally-aligned double quantum dots (DQDs), quantum-dot clusters (QCs) and quantum rings (QRs), by employing polarization-resolved micro-photoluminescence (µPL) spectroscopy. -
Enhancement of Quantum Capacitance by Chemical Modification of Graphene Supercapacitor Electrodes: a Study by first Principles
Bull. Mater. Sci. (2019) 42:257 © Indian Academy of Sciences https://doi.org/10.1007/s12034-019-1952-8 Enhancement of quantum capacitance by chemical modification of graphene supercapacitor electrodes: a study by first principles TSRUTHI and KARTICK TARAFDER∗ Department of Physics, National Institute of Technology, Srinivasnagar, Surathkal, Mangalore 575025, India ∗Author for correspondence ([email protected]) MS received 23 October 2018; accepted 15 March 2019 Abstract. In this paper, we specify a powerful way to boost quantum capacitance of graphene-based electrode materials by density functional theory calculations. We performed functionalization of graphene to manifest high-quantum capacitance. A marked quantum capacitance of above 420 μFcm−2 has been observed. Our calculations show that quantum capacitance of graphene enhances with nitrogen concentration. We have also scrutinized effect on the increase of graphene quantum capacitance due to the variation of doping concentration, configuration change as well as co-doping with nitrogen and oxygen ad-atoms in pristine graphene sheets. A significant increase in quantum capacitance was theoretically detected in functionalized graphene, mainly because of the generation of new electronic states near the Dirac point and the shift of Fermi level caused by ad-atom adsorption. Keywords. Supercapacitor; quantum capacitance; density functional theory. 1. Introduction present study, we performed density functional theory (DFT) calculations to investigate quantum capacitance of function- Production of sufficient energy from renewable energy alized graphene by means of electronic structure calculations sources, bypassing the use of fossil fuels, natural gas and coal [5]. We explored the impact of increasing nitrogen and oxy- is one of the biggest challenges to suppress climate change. -
The Role of Band Structure and Quantum Capacitance Iddo Heller, Jing Kong,† Keith A
Published on Web 05/12/2006 Electrochemistry at Single-Walled Carbon Nanotubes: The Role of Band Structure and Quantum Capacitance Iddo Heller, Jing Kong,† Keith A. Williams,‡ Cees Dekker, and Serge G. Lemay* Contribution from the KaVli Institute of Nanoscience, Delft UniVersity of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands Received February 20, 2006; E-mail: [email protected] Abstract: We present a theoretical description of the kinetics of electrochemical charge transfer at single- walled carbon nanotube (SWNT) electrodes, explicitly taking into account the SWNT electronic band structure. SWNTs have a distinct and low density of electronic states (DOS), as expressed by a small value of the quantum capacitance. We show that this greatly affects the alignment and occupation of electronic states in voltammetric experiments and thus the electrode kinetics. We model electrochemistry at metallic and semiconducting SWNTs as well as at graphene by applying the Gerischer-Marcus model of electron transfer kinetics. We predict that the semiconducting or metallic SWNT band structure and its distinct van Hove singularities can be resolved in voltammetry, in a manner analogous to scanning tunneling spectroscopy. Consequently, SWNTs of different atomic structure yield different rate constants due to structure-dependent variations in the DOS. Interestingly, the rate of charge transfer does not necessarily vanish in the band gap of a semiconducting SWNT, due to significant contributions from states which are a few kBT away from the Fermi level. The combination of a nanometer critical dimension and the distinct band structure makes SWNTs a model system for studying the effect of the electronic structure of the electrode on electrochemical charge transfer. -
Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-Effect Transistor Devices
Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices Zhihong Chen1, Joerg Appenzeller2 1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA, 2 School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA Abstract transconductance per channel width (gm/W) (top of Fig. 2). The field-effect mobility of graphene devices is discussed. For L>2μm on the other hand, gm/W decreases We argue that the graphene ballistic mean free path, Lball can only be extracted by taking into account both, the electrical characteristics and the channel length dependent mobility. In doing so we find a ballistic mean free path of Lball=300±100nm at room-temperature for a carrier concentration of ~1012cm-2 and that a substantial series resistance of around 300Ωμm has to be taken into account. Furthermore, we demonstrate first quantum capacitance measurements on single-layer graphene devices. Introduction With the need to ever further improve the performance of field-effect transistors (FETs) researchers are evaluating various novel channel materials. The most recent candidate that has sparked a substantial amount of excitement is graphene. Graphene occurs to be an ideal choice for FET Fig. 1: Scanning electron microscopy images of applications since it combines a) an ultra-thin body for back-gated graphene field-effect transistors with aggressive channel length scaling with b) excellent various channel lengths and widths. intrinsic transport properties [1-4] similar to carbon nanotubes but with c) the chance to pattern the desired monotonically with increasing L as evident from the device structures within a top-down lithographical bottom part of Fig. -
1 Capacitance Modeling of Complex Topographical Silicon Quantum Dot
Capacitance modeling of complex topographical silicon quantum dot structures H. L. Stalford1,3, R. Young1, E. P. Nordberg1,2, James. E. Levy1, Carlos Borras Pinilla3, M. S. Carroll1 1Sandia National Laboratory 2University of Wisconsin-Madison 3University of Oklahoma Abstract Quantum dot (QD) lay-outs are becoming more complex as the technology is being applied to more complex multi-QD structures. This increase in complexity requires improved capacitance modeling both for design and accurate interpretation of QD properties from measurement. A combination of process simulation, electrostatic simulation, and computer assisted design (CAD) lay-out packages are used to develop a three dimensional (3D) classical capacitance model. The agreement of the classical model’s capacitances is tested against two different, experimentally measured, topographically complex silicon QD geometries. Agreement with experiment, within 10- 20%, is demonstrated for both structures when the details of the structure are transferred from the CAD to the model capturing the full 3D topography. Small uncertainty in device dimensions due to uncontrolled variation in processing, like layer thickness and gate size, are calculated to be sufficient to explain the disagreement. The sensitivity of the capacitances to small variations in the structure also highlights the limits of accuracy of capacitance models for QD analysis. We furthermore observe that a critical density, the metal insulator transition,1 can be used as a good approximation of the metallic edge of the quantum dot when electron density in the dot is calculated directly with a semi- classical simulation. 1 1. Introduction Electrostatically defined quantum dots (QD) are of increasing interest because of technological scaling (e.g., floating gate memory)2-3, state-of-the-art standards, and revolutionary advances beyond CMOS (Complementary Metal Oxide Semiconductor) computing approaches such as cellular automata4 and quantum computing5. -
Direct Measurement of Discrete Valley and Orbital Quantum Numbers in a Multicomponent Quantum Hall System
Direct measurement of discrete valley and orbital quantum numbers in a multicomponent quantum Hall system B.M. Hunt1;2;3, J.I.A. Li2, A.A. Zibrov4, L. Wang5, T. Taniguchi6, K. Watanabe6, J. Hone5, C. R. Dean2, M. Zaletel7, R.C. Ashoori1, A.F. Young1;4;∗ 1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 2Department of Physics, Columbia University, New York, NY 10027, USA 3Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 5Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA 6Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan 7Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA 4Department of Physics, University of California, Santa Barbara CA 93106 USA ∗[email protected] Strongly interacting two dimensional electron systems ence of internal degeneracy. The Bernal bilayer graphene (B- (2DESs) host a complex landscape of broken symmetry BLG) zero energy Landau level (ZLL) provides an extreme states. The possible ground states are further expanded by example of such degeneracy. In B-BLG, LLs jξNσi are la- internal degrees of freedom such as spin or valley-isospin. beled by their electron spin σ ="; #, valley ξ = +; −, and While direct probes of spin in 2DESs were demonstrated “orbital” index N 2 Z. Electrons in valley +=− are local- two decades ago1, the valley quantum number has only ized near points K=K0 of the hexagonal Brillouin zone, while been probed indirectly in semiconductor quantum wells2, the index N is closely analogous to the LL-index of conven- graphene mono-3,4 and bilayers5–13, and, transition metal tional LL systems.