Quantum Electronics in Semiconductors

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Electronics in Semiconductors QUANTUM ELECTRONICS IN SEMICONDUCTORS C. H. W. Barnes Cavendish Laboratory, University of Cambridge Contents 1 The Free Electron Gas page 3 1.1 Reference material 3 1.2 Introduction 3 1.3 Si, GaAs and AlxGa1¡xAs properties 4 1.3.1 Real space lattice 4 1.3.2 Reciprocal space lattice 4 1.4 E®ective mass theory 6 1.5 Doping semiconductors 8 1.6 Band engineering 8 1.6.1 Modi¯cation of chemical potential and carrier densities 8 1.6.2 Band bending 11 1.7 The Si metal-oxide-semiconductor junction 13 1.8 The GaAs-AlxGa1¡xAs heterostructure 17 1.9 Capacitor model 17 1.10 Bi-layer heterostructures: Weak coupling 19 1.10.1Magnetotunnelling spectroscopy [Eisenstein] 22 1.11 Bi-layer heterostructures: Strong coupling [Davies] 25 1.12 Exercises 27 2 Semi-classical electron transport. 28 2.1 Reference material 28 2.2 Introduction 28 2.3 The non-linear Boltzmann equation 28 2.4 The linear Boltzmann equation 31 2.5 Semi-classical conductivity 33 2.6 Drude conductivity 34 2.7 Impurity scattering 36 2.8 Exercises 38 iii iv Contents 3 Particle-like motion of electrons 39 3.1 Sources 39 3.2 Introduction 39 3.3 The Ohmic contact 39 3.4 The electron aperture 40 3.4.1 The e®ective potential 41 3.5 Cyclotron motion 41 3.6 Experiments 44 3.7 Detection of ballistic motion L. W. Molenkamp [1] 44 3.8 Collimation 45 3.9 Skipping orbits J. Spector [2] 45 3.10 The cross junction C. J. B. Ford [3] 46 3.11 Chaotic Motion C. M. Marcus [4] 47 3.12 Classical refraction 49 3.13 Refraction J. Spector [5,6] 52 3.14 Exercises 53 4 The quantum Hall and Shubnikov de Haas e®ects 56 4.1 Sources 56 4.2 Introduction 56 4.3 Boltzmann prediction 56 4.4 Conductivity 58 4.5 Experiment 58 4.6 Eigenstates in a magnetic Field 60 4.7 Density of electrons in a Landau level 62 4.8 Disorder broadening of Landau levels 63 4.9 Oscillation of the Fermi energy 65 4.10 Oscillation of the capacitance 68 4.11 Conductivity and resistivity at high magnetic ¯eld 71 4.12 A simple model 75 4.13 Appendix I 78 4.14 Exercises 79 5 Quantum transport in one dimension. 80 5.1 Sources 80 5.2 Introduction 80 5.3 Experimental realization of the quasi-one-dimensional system [1] 81 5.4 Eigenstates of an in¯nitely long quasi-one-dimensional system 81 5.5 Kardynal et al [2] 83 5.6 Density of States in a quasi-one-dimensional system 92 5.7 Oscillation of the Fermi energy and Capacitance 94 5.7.1 Macks et al [4] 94 Contents v 5.7.2 Drexler et al [5] 96 5.8 The Conductance of a quasi-one-dimensional system 97 5.9 Thomas et al [9] 98 5.10 The Landauer Formalism 100 5.11 The saddle point potential 103 5.12 Determination of saddle point potential shape 106 5.13 Exercises 111 6 General quantum transport theory 113 6.1 Sources 113 6.2 Introduction 113 6.3 Eigenstates of an in¯nite quasi-one-dimensional system 113 6.4 Group Velocity 118 6.5 Density of states 119 6.6 E®ective potential at high magnetic ¯eld [1] 119 6.7 Two-terminal conductance in a magnetic ¯eld 120 6.8 The saddle point in a ¯nite magnetic ¯eld [2] 122 6.9 Magnetic Depopulation [3,4] 126 6.10 Multi-probe Landauer-BÄuttiker formalism [5] 126 6.11 Edge states and obstacles 129 6.12 The Quantum Hall E®ect 130 6.13 Exercises 137 7 Quasi-particles in two dimensions 138 7.1 Sources 138 7.2 Introduction 138 7.3 Electrical forces 139 7.4 Landau's theory of quasi-particles [2-4] 140 7.5 Quasi-particles 143 7.6 Quasi-particle decay 144 7.7 Resistivity 145 7.8 Temperature dependence of quasi-particle decay [5] 146 7.9 Density of states dependence of quasi-particle decay 149 7.10 Formation of new quasi-particles in a quantising magnetic ¯eld 149 7.11 Willett, Goldman and Du [8,11-12] 151 7.12 Composite fermions [16-17] 155 7.13 Composite fermion e®ective magnetic ¯eld 158 7.14 Composite fermion e®ective electric ¯eld 159 7.15 Composite fermion Hamiltonian 160 7.16 Fractional quantum Hall e®ect 160 7.17 Fractional edge-state model [18] 161 7.17.1Fractional quantum Hall e®ect 161 Contents 1 7.17.2Reflection of composite fermion edge states 162 7.18 Exercises 164 8 Quantum dots 165 8.1 Sources 165 8.2 Introduction 165 8.3 Quasi-zero dimensional systems [1,2] 165 8.4 The single-particle eigen-spectrum of a quantum dot [3] 167 8.4.1 Zero ¯eld limit 167 8.4.2 High ¯eld limit 168 8.5 Conductance of a quantum dot 169 8.6 McEuen et al [2] 171 8.6.1 Magnetic ¯eld dependence of resonant peaks [1,2] 171 8.7 Classical Coulomb blockade [4]. 172 8.8 Quantum Coulomb blockade 176 8.9 Arti¯cial atoms 178 8.10 The Aharonov-Bohm e®ect [5] 179 8.11 Webb et al [6] 181 8.12 High¯eld Aharonov-Bohm e®ect. 183 8.13 Edge-state networks, dots and anti-dots. 184 8.14 Mace et al [7] 186 8.15 Exercises 188 9 Quantum computation 190 9.1 Sources 190 9.2 Introduction 190 9.3 Classical vs Quantum computation 190 9.4 The DiVincenzo rules 190 9.5 The charge qubit 190 9.6 Fujisawa 190 9.7 g-factor in a semiconductor 190 9.8 Hanson 190 9.9 Single spin detection: ... 190 9.10 Interaction in the Hubbard model 190 9.11 Single-spin rotation 190 9.12 Surface acoustic wave current quantisation 190 9.13 The surface acoustic wave quantum processor 190 9.14 Exercises 190 Appendix 1 Occupation probabilities. 191 Appendix 2 Density of states in three dimensions. 193 Appendix 3 Band bending from a delta layer 194 2 Contents Appendix 4 Density of states in two dimensions. 196 1 The Free Electron Gas 1.1 Reference material [A M] Solid State Physics, N. W. Ashcroft and N. D. Mermin. [Ziman] Principles of the Theory of Solids, J. M. Ziman. [Kittel]Introduction to Solid State Physics, C. Kittel. [Sze] Semiconductor Devices: Physics and Technology, S. M. Sze. [Kelly] Low-Dimensional Semiconductors : Materials, Physics, Technology, Devices, M. J. Kelly. [Eisenstein] J. P. Eisentein et al Phys. Rev. B 44 6511 (1991) [Davies] G. Davies, et al Phys. Rev. B 54 R17331-17334 (1996). 1.2 Introduction It is a remarkable fact that a free-electron-like gas can be made to form in a semiconductor crystal. As an interacting Fermi gas, it has many complex properties and behaviours. In particular, it has been shown that by ma- nipulating these gases with electric and magnetic ¯elds, they can be made to exhibit all of the familiar quantum e®ects of undergraduate and post- graduate quantum courses. This having been said though, many of the experimental indicators of these quantum e®ects can only be fully under- stood once the basic electrostatic building blocks of the host semiconductor devices have been understood. In particular, since quantum e®ect are more easy to see in lower-dimensional systems, we concentrate here on the essen- tial physics needed to understand semiconductor devices containing single, or many parallel two-dimensional electron or hole gases. This section of the notes covers: the basic properties of Si, GaAs and AlxGa1¡xAs; e®ective mass theory; semiconductor doping; band engineer- ing; the Si MOSFET; and the GaAs-AlGas heterostructure. 3 4 The Free Electron Gas a Fig. 1.1. (a) Diamond lattice structure of Si a = 5:4Aº (b) Face centred cubic space lattice. 1.3 Si, GaAs and AlxGa1¡xAs properties 1.3.1 Real space lattice Intrinsic crystalline Silicon has a diamond lattice structure Fig. 1.1a. Its underlying space lattice is face-centred cubic (Fig. 1.1b) and its primitive basis has two identical atoms, one at co-ordinate (0; 0; 0) and the other at co- ordinate (1=4; 1=4; 1=4) measured relative to each lattice point. Each atom has four nearest neighbours that form a tetrahedron and the structure is bound by directional covalent bonds. Intrinsic crystalline GaAs has a zincblende crystal structure (Fig. 1.2). This structure also has a space lattice that is face-centered cubic but the primitive basis has two di®erent atoms, one at co-ordinate (0; 0; 0) and the other at co-ordinate (1=4; 1=4; 1=4) measured relative to each lattice point. Each atom has four nearest neighbours of the opposite type that form a tetrahedron. AlxGa1¡xAs has the same lattice structure and approximately the same lattice constant as GaAs but with occasional Al atoms substituting for Ga atoms. 1.3.2 Reciprocal space lattice The reciprocal lattice of a face-centered cubic lattice is a body-centred cubic lattice (Fig 1.3a). The principal symmetry points in the body-centred cubic reciprocal-space lattice are: ¡ = (0; 0; 0), X = (1; 0; 0) + 6 equivalent points, L = (1; 1; 1) + 8 equivalent points (Fig. 1.3b). 1.3 Si, GaAs and AlxGa1¡xAs properties 5 Fig. 1.2. Zincblende structure of GaAs a = 5:6Aº. X L L X X L Fig.
Recommended publications
  • An Intuitive Equivalent Circuit Model for Multilayer Van Der Waals Heterostructures Abhinandan Borah, Punnu Jose Sebastian, Ankur Nipane, and James T
    1 An Intuitive Equivalent Circuit Model for Multilayer van der Waals Heterostructures Abhinandan Borah, Punnu Jose Sebastian, Ankur Nipane, and James T. Teherani Abstract—Stacks of 2D materials, known as van der Waals (vdW) heterostructures, have gained vast attention due to their Layer 1 interesting electrical and optoelectronic properties. This paper Dielectric 1 1 presents an intuitive circuit model for the out-of-plane electrostat- Layer 2 � ics of a vdW heterostructure composed of an arbitrary number of Dielectric 2 2D material / layers of 2D semiconductors, graphene, or metal. We explain the mapping between the out-of-plane energy-band diagram and the � metal elements of the equivalent circuit. Though the direct solution of n dielectric the circuit model for an -layer structure is not possible due to the Dielectric variable, nonlinear quantum capacitance of each layer, this work uses the intuition gained from the energy-band picture to provide Layer Dielectric � − an efficient solution in terms of a single variable. Our method �−1 employs Fermi-Dirac statistics while properly modeling the finite Layer � − � density of states (DOS) of 2D semiconductors and graphene. � − The approach circumvents difficulties that arise in commercial � �� TCAD tools, such as the proper handling of the 2D DOS and the simulation boundary conditions when the structure terminates Fig. 1. An n-layer vdW heterostructure with voltages applied to each layer. with a nonmetallic material. Based on this methodology, we have developed 2dmatstacks, an open-source tool freely available on nanohub.org. Overall, this work equips researchers to analyze, understand, and predict experimental results in complicated vdW [11], [13], [21].
    [Show full text]
  • Kondo Effect in Mesoscopic Quantum Dots
    1 Kondo Effect in Mesoscopic Quantum Dots M. Grobis,1 I. G. Rau,2 R. M. Potok,1,3 and D. Goldhaber-Gordon1 1 Department of Physics, Stanford University, Stanford, CA 94305 2 Department of Applied Physics, Stanford University, Stanford, CA 94305 3 Department of Physics, Harvard University, Cambridge, MA 02138 Abstract A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduction electrons. Nearly a decade ago, the Kondo effect was observed in a new system, in which the magnetic moment stems from a single unpaired spin in a lithographically defined quantum dot, or artificial atom. The discovery of the Kondo effect in artificial atoms spurred a revival in the study of Kondo physics, due in part to the unprecedented control of relevant parameters in these systems. In this review we discuss the physics, origins, and phenomenology of the Kondo effect in the context of recent quantum dot experiments. After a brief historical introduction (Sec. 1), we first discuss the spin-½ Kondo effect (Sec. 2) and how it is modified by various parameters, external couplings, and non-ideal conduction reservoirs (Sec. 3). Next, we discuss measurements of more exotic Kondo systems (Sec. 4) and conclude with some possible future directions (Sec. 5). Keywords Kondo effect, quantum dot, single-electron transistor, mesoscopic physics, Anderson model, Coulomb blockade, tunneling transport, magnetism, experimental physics 2 1 Introduction At low temperatures, a small concentration of magnetic impurities — atoms or ions with a non-zero magnetic moment — can dramatically affect the behavior of conduction electrons in an otherwise pure metal.
    [Show full text]
  • Large Capacitance Enhancement in 2D Electron Systems Driven by Electron Correlations
    Large capacitance enhancement in 2D electron systems driven by electron correlations Brian Skinner, University of Minnesota with B. I. Shklovskii May 4, 2013 Capacitance as a thermodynamic probe The differential capacitance material of interest V insulator contains information about thermodynamic properties metal electrode Correlated and quantum behavior can have dramatic manifestations in the capacitance. Thermodynamic definition of C Capacitance is determined by the total energy U(Q) -Q V +Q electrons Define the “effective capacitor thickness”: 2 2 d* = ε0ε/C = ε0ε (d U/dQ ) Thermodynamic definition of C 2D material with electron density n chemical potential μ -Q d d * d 0 V e2 dn +Q 1 1 1 C Cg Cq Quantum capacitance in 2D (Noninteracting) 2DEG with parabolic spectrum: dn const. m /2 d * d a / 4 d B graphene: 1/ 2 1/ 2 n Cq n n1/ 2 d * d 8 [Ponomarenko et. al., PRL 105, 136801 (2010)] -1 Electron correlations can make Cq large and negative, so that C >> Cg and d* << d In the remainder of this talk: 1. A 2D electron gas next to d a metal electrode V 2. Monolayer graphene in a strong magnetic field 2’. Double-layer graphene Large capacitance in a capacitor 1. with a conventional 2DEG A clean, gated 2DEG at zero temperature: electron density n(V) d 2DEG insulator V metal gate electrode What is d* = ε0ε/C as a function of n? Semiclassical scaling behavior -1/2 The problem has three length scales: d, aB << d, and n -1/2 case 1: n << aB 2DEG E d 2DEG is a degenerate Fermi gas ++++++++++++++++++++ metal d* = d + aB/4 Semiclassical scaling behavior -1/2 The problem has three length scales: d, aB << d, and n -1/2 -1/2 ~ n case 2: aB << n << d 2DEG Electrons undergo crystallization: E 2 1/2 2 ++++++++++++++++++++ e n /ε0ε >> h n/m metal electron repulsion >> kinetic energy Wigner crystal has negative density of states: d µ ~ -e2n1/2/ε ε d * d 0 0 e2 dn d* = d – 0.12 n-1/2 < d [Bello, Levin, Shklovskii, and Efros, Sov.
    [Show full text]
  • Lateral Quantum Dots for Quantum Information Processing
    University of California Los Angeles Lateral Quantum Dots for Quantum Information Processing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Matthew Gregory House 2012 c Copyright by Matthew Gregory House 2012 Abstract of the Dissertation Lateral Quantum Dots for Quantum Information Processing by Matthew Gregory House Doctor of Philosophy in Physics University of California, Los Angeles, 2012 Professor Hong Wen Jiang, Chair The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot.
    [Show full text]
  • Hole Spins in an Inas/Gaas Quantum Dot Molecule Subject to Lateral Electric fields
    PHYSICAL REVIEW B 93, 245402 (2016) Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields Xiangyu Ma,1 Garnett W. Bryant,2 and Matthew F. Doty1,3,* 1Dept. of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA 2Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899-8423, USA 3Dept. of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA (Received 12 February 2016; revised manuscript received 3 May 2016; published 3 June 2016) There has been tremendous progress in manipulating electron and hole-spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically stacked InAs/GaAs QDMs using atomistic tight-binding simulations. We systematically investigate QDMs with different geometric structure parameters and local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that lateral electric fields induce hole-spin mixing with a magnitude that increases with increasing lateral electric field over a moderate range. These results suggest that applied lateral electric fields could be used to fine tune and manipulate, in situ, the energy levels and spin properties of single holes confined in QDMs. DOI: 10.1103/PhysRevB.93.245402 I.
    [Show full text]
  • Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha
    Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha B.A. in Physics and Math, University of Chicago, 2001 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author............................................... ............... Department of Physics December 11, 2007 Certified by........................................... ............... Marc A. Kastner Donner Professor of Physics and Dean of the School of Science Thesis Supervisor Accepted by........................................... .............. Thomas J. Greytak Professor and Associate Department Head for Education 2 Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha Submitted to the Department of Physics on December 11, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We report measurements that use real-time charge sensing to probe a single-electron lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent to the dot and the sensitivity is comparable to other QPC-based systems. We develop an automated feedback system to position the energies of the states in the dot with respect to the Fermi energy of the leads. We also develop a triggering system to identify electron tunneling events in real-time data. Using real-time charge sensing, we measure the rate at which an electron tun- nels onto or off of the dot. In zero magnetic field, we find that these rates depend exponentially on the voltages applied to the dot. We show that this dependence is consistent with a model that assumes elastic tunneling and accounts for the changes in the energies of the states in the dot relative to the heights of the tunnel barriers.
    [Show full text]
  • Exciton Fine-Structure Splitting in Self-Assembled Lateral Inas/Gaas
    Exciton Fine-Structure Splitting in Self- Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures Stanislav Filippov, Yuttapoom Puttisong, Yuqing Huang, Irina A Buyanova, Suwaree Suraprapapich, Charles. W. Tu and Weimin Chen Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Stanislav Filippov, Yuttapoom Puttisong, Yuqing Huang, Irina A Buyanova, Suwaree Suraprapapich, Charles. W. Tu and Weimin Chen, Exciton Fine-Structure Splitting in Self- Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures, 2015, ACS Nano, (9), 6, 5741-5749. http://dx.doi.org/10.1021/acsnano.5b01387 Copyright: American Chemical Society http://pubs.acs.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118007 1 Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures Stanislav Fillipov,1,† Yuttapoom Puttisong,1, † Yuqing Huang,1 Irina A. Buyanova,1 Suwaree Suraprapapich,2 Charles W. Tu2 and Weimin M. Chen1,* 1Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping, Sweden 2Department of Electrical and Computer Engineering, University of California, La Jolla, CA 92093, USA ABSTRACT Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized lateral InAs/GaAs quantum-dot molecular structures (QMSs) including laterally-aligned double quantum dots (DQDs), quantum-dot clusters (QCs) and quantum rings (QRs), by employing polarization-resolved micro-photoluminescence (µPL) spectroscopy.
    [Show full text]
  • Enhancement of Quantum Capacitance by Chemical Modification of Graphene Supercapacitor Electrodes: a Study by first Principles
    Bull. Mater. Sci. (2019) 42:257 © Indian Academy of Sciences https://doi.org/10.1007/s12034-019-1952-8 Enhancement of quantum capacitance by chemical modification of graphene supercapacitor electrodes: a study by first principles TSRUTHI and KARTICK TARAFDER∗ Department of Physics, National Institute of Technology, Srinivasnagar, Surathkal, Mangalore 575025, India ∗Author for correspondence ([email protected]) MS received 23 October 2018; accepted 15 March 2019 Abstract. In this paper, we specify a powerful way to boost quantum capacitance of graphene-based electrode materials by density functional theory calculations. We performed functionalization of graphene to manifest high-quantum capacitance. A marked quantum capacitance of above 420 μFcm−2 has been observed. Our calculations show that quantum capacitance of graphene enhances with nitrogen concentration. We have also scrutinized effect on the increase of graphene quantum capacitance due to the variation of doping concentration, configuration change as well as co-doping with nitrogen and oxygen ad-atoms in pristine graphene sheets. A significant increase in quantum capacitance was theoretically detected in functionalized graphene, mainly because of the generation of new electronic states near the Dirac point and the shift of Fermi level caused by ad-atom adsorption. Keywords. Supercapacitor; quantum capacitance; density functional theory. 1. Introduction present study, we performed density functional theory (DFT) calculations to investigate quantum capacitance of function- Production of sufficient energy from renewable energy alized graphene by means of electronic structure calculations sources, bypassing the use of fossil fuels, natural gas and coal [5]. We explored the impact of increasing nitrogen and oxy- is one of the biggest challenges to suppress climate change.
    [Show full text]
  • The Role of Band Structure and Quantum Capacitance Iddo Heller, Jing Kong,† Keith A
    Published on Web 05/12/2006 Electrochemistry at Single-Walled Carbon Nanotubes: The Role of Band Structure and Quantum Capacitance Iddo Heller, Jing Kong,† Keith A. Williams,‡ Cees Dekker, and Serge G. Lemay* Contribution from the KaVli Institute of Nanoscience, Delft UniVersity of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands Received February 20, 2006; E-mail: [email protected] Abstract: We present a theoretical description of the kinetics of electrochemical charge transfer at single- walled carbon nanotube (SWNT) electrodes, explicitly taking into account the SWNT electronic band structure. SWNTs have a distinct and low density of electronic states (DOS), as expressed by a small value of the quantum capacitance. We show that this greatly affects the alignment and occupation of electronic states in voltammetric experiments and thus the electrode kinetics. We model electrochemistry at metallic and semiconducting SWNTs as well as at graphene by applying the Gerischer-Marcus model of electron transfer kinetics. We predict that the semiconducting or metallic SWNT band structure and its distinct van Hove singularities can be resolved in voltammetry, in a manner analogous to scanning tunneling spectroscopy. Consequently, SWNTs of different atomic structure yield different rate constants due to structure-dependent variations in the DOS. Interestingly, the rate of charge transfer does not necessarily vanish in the band gap of a semiconducting SWNT, due to significant contributions from states which are a few kBT away from the Fermi level. The combination of a nanometer critical dimension and the distinct band structure makes SWNTs a model system for studying the effect of the electronic structure of the electrode on electrochemical charge transfer.
    [Show full text]
  • Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-Effect Transistor Devices
    Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices Zhihong Chen1, Joerg Appenzeller2 1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA, 2 School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA Abstract transconductance per channel width (gm/W) (top of Fig. 2). The field-effect mobility of graphene devices is discussed. For L>2μm on the other hand, gm/W decreases We argue that the graphene ballistic mean free path, Lball can only be extracted by taking into account both, the electrical characteristics and the channel length dependent mobility. In doing so we find a ballistic mean free path of Lball=300±100nm at room-temperature for a carrier concentration of ~1012cm-2 and that a substantial series resistance of around 300Ωμm has to be taken into account. Furthermore, we demonstrate first quantum capacitance measurements on single-layer graphene devices. Introduction With the need to ever further improve the performance of field-effect transistors (FETs) researchers are evaluating various novel channel materials. The most recent candidate that has sparked a substantial amount of excitement is graphene. Graphene occurs to be an ideal choice for FET Fig. 1: Scanning electron microscopy images of applications since it combines a) an ultra-thin body for back-gated graphene field-effect transistors with aggressive channel length scaling with b) excellent various channel lengths and widths. intrinsic transport properties [1-4] similar to carbon nanotubes but with c) the chance to pattern the desired monotonically with increasing L as evident from the device structures within a top-down lithographical bottom part of Fig.
    [Show full text]
  • 1 Capacitance Modeling of Complex Topographical Silicon Quantum Dot
    Capacitance modeling of complex topographical silicon quantum dot structures H. L. Stalford1,3, R. Young1, E. P. Nordberg1,2, James. E. Levy1, Carlos Borras Pinilla3, M. S. Carroll1 1Sandia National Laboratory 2University of Wisconsin-Madison 3University of Oklahoma Abstract Quantum dot (QD) lay-outs are becoming more complex as the technology is being applied to more complex multi-QD structures. This increase in complexity requires improved capacitance modeling both for design and accurate interpretation of QD properties from measurement. A combination of process simulation, electrostatic simulation, and computer assisted design (CAD) lay-out packages are used to develop a three dimensional (3D) classical capacitance model. The agreement of the classical model’s capacitances is tested against two different, experimentally measured, topographically complex silicon QD geometries. Agreement with experiment, within 10- 20%, is demonstrated for both structures when the details of the structure are transferred from the CAD to the model capturing the full 3D topography. Small uncertainty in device dimensions due to uncontrolled variation in processing, like layer thickness and gate size, are calculated to be sufficient to explain the disagreement. The sensitivity of the capacitances to small variations in the structure also highlights the limits of accuracy of capacitance models for QD analysis. We furthermore observe that a critical density, the metal insulator transition,1 can be used as a good approximation of the metallic edge of the quantum dot when electron density in the dot is calculated directly with a semi- classical simulation. 1 1. Introduction Electrostatically defined quantum dots (QD) are of increasing interest because of technological scaling (e.g., floating gate memory)2-3, state-of-the-art standards, and revolutionary advances beyond CMOS (Complementary Metal Oxide Semiconductor) computing approaches such as cellular automata4 and quantum computing5.
    [Show full text]
  • Direct Measurement of Discrete Valley and Orbital Quantum Numbers in a Multicomponent Quantum Hall System
    Direct measurement of discrete valley and orbital quantum numbers in a multicomponent quantum Hall system B.M. Hunt1;2;3, J.I.A. Li2, A.A. Zibrov4, L. Wang5, T. Taniguchi6, K. Watanabe6, J. Hone5, C. R. Dean2, M. Zaletel7, R.C. Ashoori1, A.F. Young1;4;∗ 1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 2Department of Physics, Columbia University, New York, NY 10027, USA 3Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 5Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA 6Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan 7Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA 4Department of Physics, University of California, Santa Barbara CA 93106 USA ∗[email protected] Strongly interacting two dimensional electron systems ence of internal degeneracy. The Bernal bilayer graphene (B- (2DESs) host a complex landscape of broken symmetry BLG) zero energy Landau level (ZLL) provides an extreme states. The possible ground states are further expanded by example of such degeneracy. In B-BLG, LLs jξNσi are la- internal degrees of freedom such as spin or valley-isospin. beled by their electron spin σ ="; #, valley ξ = +; −, and While direct probes of spin in 2DESs were demonstrated “orbital” index N 2 Z. Electrons in valley +=− are local- two decades ago1, the valley quantum number has only ized near points K=K0 of the hexagonal Brillouin zone, while been probed indirectly in semiconductor quantum wells2, the index N is closely analogous to the LL-index of conven- graphene mono-3,4 and bilayers5–13, and, transition metal tional LL systems.
    [Show full text]