AN ACCURATE COMPUTATIONAL SOLUTION OF TOTALLY POSITIVE CAUCHY LINEAR SYSTEMS Abdoulaye Cissé Andrew Anda Computer Science Department Computer Science Department St. Cloud State University St. Cloud State University St. Cloud, MN 56301 St. Cloud, MN 56301
[email protected] [email protected] Abstract ≈ ’ ∆ 1 The Cauchy linear systems C(x, y)V = b where C(x, y) = ∆ , x = (xi ) , y = ( yi ) , « xi − y j V = (vi ) , b = (bi ) can be solved very accurately regardless of condition number using Björck-Pereyra-type methods. We explain this phenomenon by the following facts. First, the Björck-Pereyra methods, written in matrix form, are essentially an accurate and efficient bidiagonal decomposition of the inverse of the matrix, as obtained by Neville Elimination with no pivoting. Second, each nontrivial entry of this bidiagonal decomposition is a product of two quotients of (initial) minors. We use this method to derive and implement a new method of accurately and efficiently solving totally positive Cauchy linear systems in time complexity O(n2). Keywords: Accuracy, Björck-Pereyra-type methods, Cauchy linear systems, floating point architectures, generalized Vandermonde linear systems, Neville elimination, totally positive, LDU decomposition. Note: In this paper we assume that the nodes xi and yj are pair wise distinct and C is totally positive 1 Background Definition 1.1 A Cauchy matrix is defined as: ≈ ’ ∆ 1 C(x, y) = ∆ , for i, j = 1,2,..., n (1.1) « xi − y j where the nodes xi and yj are assumed pair wise distinct. C(x,y) is totally positive (TP) if 2 2 0 < y1 < y2 < < yn−1 < yn < x1 < x2 < < xn−1 < xn .