Indian Institute of Technology, Bombay Ma 106

Total Page:16

File Type:pdf, Size:1020Kb

Indian Institute of Technology, Bombay Ma 106 INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY MA 106 Autumn 2012-13 Note 6 APPLICATIONS OF ROW REDUCTION As we saw at the end of the last note, the Gaussian reduction provides a very practical method for solving systems of linear equations. Its superiority can be seen, for example, by comparing it with other methods, e.g. the Crammer’s rule. This rule has a very limited applicability, since it applies only when the number of equations equals the number of unknowns, i.e. when the coefficient matrix A in the system Ax = b (1) is a square matrix (of order n, say). Even when this is so, the rule is silent about what happens if A is not invertible, i.e. when |A| = 0. And even when it does speak, the formula it gives for the solution viz. △1 △2 △n x1 = , x2 = ,...,x = (2) △ △ n △ (where △ = |A|, the determinant of A and for i = 1, 2,...,n, △i is the determinant of the matrix obtained by replacing the i-th column of A by the column vector b) involves the computation of n + 1 determinants of order n each. This is a horrendous task even for small values of n. With row reduction, we not only get a complete answer applicable regard- less of the size of A, we get it very efficiently. The efficiency of an algorithm depends on the number of various elementary operations such as addition and multiplication that have to be carried out in its execution. This num- ber, in general, depends not only on the algorithm but also on the particular piece of data to which it is applied. For example, if A = In in (1) then hardly any arithmetic is needed. To avoid such false impressions of efficiency, there are two standard yardsticks. One is the pessimistic one where we consider the worst case performance. The other is the practical one, where we consider the average performance, the average being taken either over all instances of data of a given size, or in some cases, over only those pieces of data which are more relevant in a particular application. (For example, in 1 some applications, the matrix A has only non-negative entries. Or in some applications it may be what is called a sparse matrix, i.e. a matrix with a large number of zero entries, such as the incidence matrix of a graph.) Questions of efficiency of an algorithm are considered in a branch of math- ematics called numerical analysis. We bypass them except to comment that the number of multiplications needed in the execution of the Gaus- sian reduction applied to (1) is, in the worst case, of the order of k3 where k = max{m, n} is a measure of the size of the piece of data. Instead, we turn to some theoretical applications of Gaussian reduction. Some of these are already familiar to us in the special cases where the size of A in (1) is 3 or less. For example, in Note 1, we used the determinant criterion to show the concurrency of the three altitudes of a triangle. The proofs we know are often by direct computation. We shall show how this can be derived easily by Gaussian reduction. Unless otherwise stated, throughout we shall assume that we are dealing with the system (1) where A is an m × n matrix and that after Gaussian reduction, it is transformed into A∗x = b∗ (3) where the matrix A∗ is in a row echelon form. To fix notations, we assume that only the first r rows of A∗ are non-zero and further that for i =1, 2,...,r, the first non-zero entry (which is always 1) in the i-th row occurs in the ji-th column, so that the integers j1, j2,...,jr are strictly increasing. (We recall that these are also the column numbers of the locations of the successive pivots in the Gaussian reduction. Note further that nothing is said about the vanishing or non-vanishing of the entries in the column vector b∗.) Since the matrix A and the column vector b are subjected to the same row operations throughout the Gaussian reduction, it is sometimes convenient to . merge them into a single m × (n + 1) matrix suggestively denoted by [A . b] and called the augmented matrix of (1) because it is obtained by appending . or ‘augmenting’ one more column to A. Similarly, [A∗ . b∗] is the augmented matrix of the reduced system A∗x = b∗. We first observe that the rank of A∗ is r. To see this, note first that the ∗ r × r submatrix of A formed by the first r rows and the j1-th, j2-th, . , ∗ jr-th columns of A is an upper triangular matrix with all diagonal entries and hence the determinant 1. So r(A∗) is at least r. On the other hand any r +1 (or more) rows of A and hence any submatrix of A contain at least one row with all entries 0. So, A cannot have an invertible submatrix of order 2 r + 1 (or more). Hence r(A) is precisely r. This is hardly an achievement. But a non-trivial consequence is that the rank of the original matrix A is also r because the rank is invariant under each elementary row operation as is easy to check directly. We thus see that the Gaussian elimination gives an efficient method to determine the rank of a matrix A. If m = n, then A and A∗ are square matrices. The determinant of A∗ is the product of its diagonal entries. From this we can determine the determinant of A if we have kept track of which row operations we did in reducing A to A∗. What about the ranks of the augmented matrices [A . b] and [A∗ . b∗]? Again, they are equal to each other. Moreover they will be either r or r + 1. From the entries of the reduced column vector b∗, it is very easy to tell which possibility holds. Suppose the entries in the last m − r rows are ∗ ∗ ∗ br+1, br+2,...,bm. If at least one of these numbers is non-zero then the rank of the augmented matrix is r + 1. Otherwise it is r. In terms of these two ranks, the criterion for the existence of a solution to (1) is simply that . r(A)= r([A . b]) (4) This is proved easily because for the reduced system A∗x = b∗, it is very ∗ obvious that a solution cannot exist if bj is non-zero for some j>r, for in that case the j-th equation (in the reduced system) will be 0x1 +0x2 + ... + ∗ 0xn = bj . Such a system is said to be inconsistent. On the other hand, if ∗ ∗ ∗ br+1, br+2,...,bm all vanish then a solution does exist. In fact, we can get the entire solution set (or the ‘solution space’ as it is sometimes called) as follows. We assign arbitrary values to the n − r variables other than xj1 , xj2 ,...,xjr . Once these values are fixed these r variables can be determined one-by-one starting in the reverse order. (This is known as back substitution.) The fact that n − r variables could be assigned arbitrary values is expressed technically by saying that the solution space has n−r degrees of freedom. Such a system is said to be under-determined because there aren’t enough equations to determine the unknowns uniquely. Note that since r ≤ m, a system with m < n, i.e. a system with fewer equations than unknowns is always underdetermined with at least n − m degrees of freedom, provided, of course, that it is consistent. Thus we see that the number r plays a crucial role. It is also called the rank of the system (1). (The rank of the augmented matrix is called the ‘augmented rank’ of the system.) Superficially, the system has m equations. 3 But the rank tells how many ‘really different’ equations there are, the un- derstanding being that an equation which follows as a consequence of some other equations in the system will be considered as redundant and will not be counted in presence of those equations from which it follows. Gaussian elim- ination essentially amounts to eliminating such redundant equations. When we have reduced the system to these r non-redundant equations, each one of them reduces the degree of freedom by one and that is why the solution set, except when it is empty, has n − r degrees of freedom. Later we shall introduce the concept of linear dependence which will give a precise meaning to what we have been describing loosely as redundant. All these cases can be illustrated by considering systems of linear equations in three variables which we denote by x, y, z so as to make us feel at home. Then the solution sets are various subsets of the three dimensional space R3. A single (non-degenerate) equation represents a plane which has 2 degrees of freedom. A system of two such equations represents a straight line in general, viz. the line of intersection of the two planes represented by the two equations. Such a line has one degree of freedom. (That is why it can be parametrised by a single parameter.) Note that here n = 3 and r = m = 2. However, if the two planes are parallel then even though m = 2, r is only 1. If the two planes are parallel (but distinct) then the augmented rank is 2 and there is no solution, i.e.
Recommended publications
  • Seminar VII for the Course GROUP THEORY in PHYSICS Micael Flohr
    Seminar VII for the course GROUP THEORY IN PHYSICS Mic~ael Flohr The classical Lie groups 25. January 2005 MATRIX LIE GROUPS Most Lie groups one ever encouters in physics are realized as matrix Lie groups and thus as subgroups of GL(n, R) or GL(n, C). This is the group of invertibel n × n matrices with coefficients in R or C, respectively. This is a Lie group, since it forms as an open subset of the vector space of n × n matrices a manifold. Matrix multiplication is certainly a differentiable map, as is taking the inverse via Cramer’s rule. The only condition defining the open 2 subset is that the determinat must not be zero, which implies that dimKGL(n, K) = n is the same as the one of the vector space Mn(K). However, GL(n, R) is not connected, because we cannot move continuously from a matrix with determinant less than zero to one with determinant larger than zero. It is worth mentioning that gl(n, K) is the vector space of all n × n matrices over the field K, equipped with the standard commutator as Lie bracket. We can describe most other Lie groups as subgroups of GL(n, K) for either K = R or K = C. There are two ways to do so. Firstly, one can give restricting equations to the coefficients of the matrices. Secondly, one can find subgroups of the automorphisms of V =∼ Kn, which conserve a given structure on Kn. In the following, we give some examples for this: SL(n, K).
    [Show full text]
  • Inertia of the Matrix [(Pi + Pj) ]
    isid/ms/2013/12 October 20, 2013 http://www.isid.ac.in/estatmath/eprints r Inertia of the matrix [(pi + pj) ] Rajendra Bhatia and Tanvi Jain Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi{110 016, India r INERTIA OF THE MATRIX [(pi + pj) ] RAJENDRA BHATIA* AND TANVI JAIN** Abstract. Let p1; : : : ; pn be positive real numbers. It is well r known that for every r < 0 the matrix [(pi + pj) ] is positive def- inite. Our main theorem gives a count of the number of positive and negative eigenvalues of this matrix when r > 0: Connections with some other matrices that arise in Loewner's theory of oper- ator monotone functions and in the theory of spline interpolation are discussed. 1. Introduction Let p1; p2; : : : ; pn be distinct positive real numbers. The n×n matrix 1 C = [ ] is known as the Cauchy matrix. The special case pi = i pi+pj 1 gives the Hilbert matrix H = [ i+j ]: Both matrices have been studied by several authors in diverse contexts and are much used as test matrices in numerical analysis. The Cauchy matrix is known to be positive definite. It possessesh ai ◦r 1 stronger property: for each r > 0 the entrywise power C = r (pi+pj ) is positive definite. (See [4] for a proof.) The object of this paper is to study positivity properties of the related family of matrices r Pr = [(pi + pj) ]; r ≥ 0: (1) The inertia of a Hermitian matrix A is the triple In(A) = (π(A); ζ(A); ν(A)) ; in which π(A); ζ(A) and ν(A) stand for the number of positive, zero, and negative eigenvalues of A; respectively.
    [Show full text]
  • Fast Approximation Algorithms for Cauchy Matrices, Polynomials and Rational Functions
    City University of New York (CUNY) CUNY Academic Works Computer Science Technical Reports CUNY Academic Works 2013 TR-2013011: Fast Approximation Algorithms for Cauchy Matrices, Polynomials and Rational Functions Victor Y. Pan How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_cs_tr/386 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Fast Approximation Algorithms for Cauchy Matrices, Polynomials and Rational Functions ? Victor Y. Pan Department of Mathematics and Computer Science Lehman College and the Graduate Center of the City University of New York Bronx, NY 10468 USA [email protected], home page: http://comet.lehman.cuny.edu/vpan/ Abstract. The papers [MRT05], [CGS07], [XXG12], and [XXCBa] have combined the advanced FMM techniques with transformations of matrix structures (traced back to [P90]) in order to devise numerically stable algorithms that approximate the solutions of Toeplitz, Hankel, Toeplitz- like, and Hankel-like linear systems of equations in nearly linear arith- metic time, versus classical cubic time and quadratic time of the previous advanced algorithms. We show that the power of these approximation al- gorithms can be extended to yield similar results for computations with other matrices that have displacement structure, which includes Van- dermonde and Cauchy matrices, as well as to polynomial and rational evaluation and interpolation. The resulting decrease of the running time of the known approximation algorithms is again by order of magnitude, from quadratic to nearly linear.
    [Show full text]
  • An Accurate Computational Solution of Totally Positive Cauchy Linear Systems
    AN ACCURATE COMPUTATIONAL SOLUTION OF TOTALLY POSITIVE CAUCHY LINEAR SYSTEMS Abdoulaye Cissé Andrew Anda Computer Science Department Computer Science Department St. Cloud State University St. Cloud State University St. Cloud, MN 56301 St. Cloud, MN 56301 [email protected] [email protected] Abstract ≈ ’ ∆ 1 The Cauchy linear systems C(x, y)V = b where C(x, y) = ∆ , x = (xi ) , y = ( yi ) , « xi − y j V = (vi ) , b = (bi ) can be solved very accurately regardless of condition number using Björck-Pereyra-type methods. We explain this phenomenon by the following facts. First, the Björck-Pereyra methods, written in matrix form, are essentially an accurate and efficient bidiagonal decomposition of the inverse of the matrix, as obtained by Neville Elimination with no pivoting. Second, each nontrivial entry of this bidiagonal decomposition is a product of two quotients of (initial) minors. We use this method to derive and implement a new method of accurately and efficiently solving totally positive Cauchy linear systems in time complexity O(n2). Keywords: Accuracy, Björck-Pereyra-type methods, Cauchy linear systems, floating point architectures, generalized Vandermonde linear systems, Neville elimination, totally positive, LDU decomposition. Note: In this paper we assume that the nodes xi and yj are pair wise distinct and C is totally positive 1 Background Definition 1.1 A Cauchy matrix is defined as: ≈ ’ ∆ 1 C(x, y) = ∆ , for i, j = 1,2,..., n (1.1) « xi − y j where the nodes xi and yj are assumed pair wise distinct. C(x,y) is totally positive (TP) if 2 2 0 < y1 < y2 < < yn−1 < yn < x1 < x2 < < xn−1 < xn .
    [Show full text]
  • Displacement Rank of the Drazin Inverse Huaian Diaoa, Yimin Weib;1, Sanzheng Qiaoc;∗;2
    Available online at www.sciencedirect.com Journal of Computational and Applied Mathematics 167 (2004) 147–161 www.elsevier.com/locate/cam Displacement rank of the Drazin inverse Huaian Diaoa, Yimin Weib;1, Sanzheng Qiaoc;∗;2 aInstitute of Mathematics, Fudan University, Shanghai 200433, PR China bDepartment of Mathematics, Fudan University, Shanghai 200433, PR China cDepartment of Computing and Software, McMaster University, Hamilton, Ont., Canada L8S 4L7 Received 20 February 2003; received in revised form 4 August 2003 Abstract In this paper, we study the displacement rank of the Drazin inverse. Both Sylvester displacement and the generalized displacement are discussed. We present upper bounds for the ranks of the displacements of the Drazin inverse. The general results are applied to the group inverse of a structured matrix such as close-to- Toeplitz, generalized Cauchy, Toeplitz-plus-Hankel, and Bezoutians. c 2003 Elsevier B.V. All rights reserved. MSC: 15A09; 65F20 Keywords: Drazin inverse; Displacement; Structured matrix; Jordan canonical form 1. Introduction Displacement gives a quantitative way of identifying the structure of a matrix. Consider an n × n Toeplitz matrix t0 t−1 ··· t−n+1 . t .. .. 1 T = ; . .. .. . t−1 tn−1 ··· t1 t0 ∗ Corresponding author. Tel.: +1-905-525-9140; fax: +1-905-524-0340. E-mail addresses: [email protected] (Y. Wei), [email protected] (S. Qiao). 1 Supported by National Natural Science Foundation of China under Grant 19901006. 2 Partially supported by Natural Science and Engineering Research Council of Canada. 0377-0427/$ - see front matter c 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2003.09.050 148 H.
    [Show full text]
  • Arxiv:2104.06123V2 [Nlin.SI] 19 Jul 2021
    LINEAR INTEGRAL EQUATIONS AND TWO-DIMENSIONAL TODA SYSTEMS YUE YIN AND WEI FU Abstract. The direct linearisation framework is presented for the two-dimensional Toda equations associated with the infinite-dimensional (1) (2) (1) (2) Z+ Lie algebras A∞, B∞ and C∞, as well as the Kac–Moody algebras Ar , A2r , Cr and Dr+1 for arbitrary integers r ∈ , from the aspect of a set of linear integral equations in a certain form. Such a scheme not only provides a unified perspective to understand the underlying integrability structure, but also induces the direct linearising type solution potentially leading to the universal solution space, for each class of the two-dimensional Toda system. As particular applications of this framework to the two-dimensional Toda lattices, we rediscover the Lax pairs and the adjoint Lax pairs and simultaneously construct the generalised Cauchy matrix solutions. 1. Introduction In the modern theory of integrable systems, the notion of integrability of nonlinear equations often refers to the property that a differential/difference equation is exactly solvable under an initial-boundary condition, which in many cases allows us to construct explicit solutions. Motivated by this, many mathematical methods were invented and developed to search for explicit solutions of nonlinear models, for instance, the inverse scattering transform, the Darboux transform, Hirota’s bilinear method, as well as the algebro-geometric method, etc., see e.g. the monographs [1,11,16,26]. These techniques not only explained the nonlinear phenomena such as solitary waves and periodic waves in nature mathematically, but also motivated the discoveryof a huge number of nonlinear equations that possess “nice” algebraic and geometric properties.
    [Show full text]
  • Fast Approximate Computations with Cauchy Matrices and Polynomials ∗
    Fast Approximate Computations with Cauchy Matrices and Polynomials ∗ Victor Y. Pan Departments of Mathematics and Computer Science Lehman College and the Graduate Center of the City University of New York Bronx, NY 10468 USA [email protected] http://comet.lehman.cuny.edu/vpan/ Abstract Multipoint polynomial evaluation and interpolation are fundamental for modern symbolic and nu- merical computing. The known algorithms solve both problems over any field of constants in nearly linear arithmetic time, but the cost grows to quadratic for numerical solution. We fix this discrepancy: our new numerical algorithms run in nearly linear arithmetic time. At first we restate our goals as the multiplication of an n × n Vandermonde matrix by a vector and the solution of a Vandermonde linear system of n equations. Then we transform the matrix into a Cauchy structured matrix with some special features. By exploiting them, we approximate the matrix by a generalized hierarchically semiseparable matrix, which is a structured matrix of a different class. Finally we accelerate our solution to the original problems by applying Fast Multipole Method to the latter matrix. Our resulting numerical algorithms run in nearly optimal arithmetic time when they perform the above fundamental computations with polynomials, Vandermonde matrices, transposed Vandermonde matrices, and a large class of Cauchy and Cauchy-like matrices. Some of our techniques may be of independent interest. Key words: Polynomial evaluation; Rational evaluation; Interpolation; Vandermonde matrices; Transfor- mation of matrix structures; Cauchy matrices; Fast Multipole Method; HSS matrices; Matrix compression AMS Subject Classification: 12Y05, 15A04, 47A65, 65D05, 68Q25 1 Introduction 1.1 The background and our progress Multipoint polynomial evaluation and interpolation are fundamental for modern symbolic and numerical arXiv:1506.02285v3 [math.NA] 17 Apr 2017 computing.
    [Show full text]
  • Positivity Properties of the Matrix (I + J)I+J
    isid/ms/2015/11 September 21, 2015 http://www.isid.ac.in/∼statmath/index.php?module=Preprint Positivity properties of the matrix (i + j)i+j Rajendra Bhatia and Tanvi Jain Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi{110 016, India POSITIVITY PROPERTIES OF THE MATRIX [(i + j)i+j] RAJENDRA BHATIA AND TANVI JAIN Abstract. Let p1 < p2 < ··· < pn be positive real numbers. pi+pj It is shown that the matrix whose i; j entry is (pi + pj) is infinitely divisible, nonsingular and totally positive. 1. Introduction Matrices whose entries are obtained by assembling natural numbers in special ways often possess interesting properties. The most famous h 1 i example of such a matrix is the Hilbert matrix H = i+j−1 which has inspired a lot of work in diverse areas. Some others are the min i+j matrix M = min(i; j) ; and the Pascal matrix P = i . There is a considerable body of literature around each of these matrices, a sample of which can be found in [3], [5] and [7]. In this note we initiate the study of one more matrix of this type. Let A be the n×n matrix with its (i; j) entry equal to (i+j −1)i+j−1. Thus 2 1 22 33 ··· nn 3 6 22 33 44 ··· (n + 1)n+1 7 6 3 4 5 7 A = 6 3 4 5 ······ 7 : (1) 6 7 4 ··············· 5 nn ········· (2n − 1)2n−1 More generally, let p1 < p2 < ··· < pn be positive real numbers, and consider the n × n matrix pi+pj B = (pi + pj) : (2) The special choice pi = i − 1=2 in (2) gives us the matrix (1).
    [Show full text]
  • Combined Matrices of Matrices in Special Classes
    Combined matrices of matrices in special classes Miroslav Fiedler Institute of Computer Science AS CR May 2010 Combined matrices of matrices in special classes Let A be a nonsingular (complex, or even more general) matrix. In [3], we called the Hadamard (entrywise) product A ± (A¡1)T the combined matrix of A, and denoted it as C(A). It has good properties: All its row- and column-sums are equal to one. If we multiply A by a nonsingular diagonal matrix from the left or from the right, C(A) will not change. It is a long standing problem to characterize the range of C(A) if A runs through the set of all positive de¯nite n £ n matrices. A partial answer describing the diagonal entries of C(A) in this case was given in [2]: Theorem 1. A necessary and su±cient condition that the numbers a11, a22, : : : ; ann are diagonal entries of a positive de¯nite matrix and ®11; ®22;:::, ®nn the diagonal entries of its inverse matrix, is ful¯lling of : 1. aii > 0, ®ii > 0 for all i, 2. a ® ¡ 1 ¸ 0 for all i, ii ii p P p 3. 2 maxi( aii®ii ¡ 1) · i( aii®ii ¡ 1): In the notation above, it means that a matrix M = [mik] can serve as C(A) for A positive de¯nite, only if its diagonal entries satisfy m ¸ 1 and p P p ii 2 maxi( mii ¡ 1) · i( mii ¡ 1): In fact, there is also another necessary condition, namely, that the matrix M ¡ I, I being the identity matrix, is positive semide¯nite.
    [Show full text]
  • Arxiv:1811.08406V1 [Math.NA]
    MATRI manuscript No. (will be inserted by the editor) Bj¨orck-Pereyra-type methods and total positivity Jos´e-Javier Mart´ınez Received: date / Accepted: date Abstract The approach to solving linear systems with structured matrices by means of the bidiagonal factorization of the inverse of the coefficient matrix is first considered, the starting point being the classical Bj¨orck-Pereyra algo- rithms for Vandermonde systems, published in 1970 and carefully analyzed by Higham in 1987. The work of Higham showed the crucial role of total pos- itivity for obtaining accurate results, which led to the generalization of this approach to totally positive Cauchy, Cauchy-Vandermonde and generalized Vandermonde matrices. Then, the solution of other linear algebra problems (eigenvalue and singular value computation, least squares problems) is addressed, a fundamental tool being the bidiagonal decomposition of the corresponding matrices. This bidi- agonal decomposition is related to the theory of Neville elimination, although for achieving high relative accuracy the algorithm of Neville elimination is not used. Numerical experiments showing the good behaviour of these algorithms when compared with algorithms which ignore the matrix structure are also included. Keywords Bj¨orck-Pereyra algorithm · Structured matrix · Totally positive matrix · Bidiagonal decomposition · High relative accuracy Mathematics Subject Classification (2010) 65F05 · 65F15 · 65F20 · 65F35 · 15A23 · 15B05 · 15B48 arXiv:1811.08406v1 [math.NA] 20 Nov 2018 J.-J. Mart´ınez Departamento de F´ısica y Matem´aticas, Universidad de Alcal´a, Alcal´ade Henares, Madrid 28871, Spain E-mail: [email protected] 2 Jos´e-Javier Mart´ınez 1 Introduction The second edition of the Handbook of Linear Algebra [25], edited by Leslie Hogben, is substantially expanded from the first edition of 2007 and, in connec- tion with our work, it contains a new chapter by Michael Stewart entitled Fast Algorithms for Structured Matrix Computations (chapter 62) [41].
    [Show full text]
  • On the Q-Analogue of Cauchy Matrices Alessandro Neri
    I am a friend of Finite Geometry! On the q-Analogue of Cauchy Matrices Alessandro Neri 17-21 June 2019 - VUB Alessandro Neri 19 June 2019 1 / 19 On the q-Analogue of Cauchy Matrices Alessandro Neri I am a friend of Finite Geometry! 17-21 June 2019 - VUB Alessandro Neri 19 June 2019 1 / 19 q-Analogues Model Finite set Finite dim vector space over Fq Element 1-dim subspace ; f0g Cardinality Dimension Intersection Intersection Union Sum Alessandro Neri 19 June 2019 1 / 19 Examples 1. Binomials and q-binomials: k−1 k−1 n Y n − i n Y 1 − qn−i = ; = : k k − i k 1 − qk−i i=0 q i=0 2. (Chu)-Vandermonde and q-Vandermonde identity: k k m + n X m n m + n X m n = ; = qj(m−k+j): k j k − j k k − j j j=0 q j=0 q q 3. Polynomials and q-polynomials: k q qk a0 + a1x + ::: + ak x ; a0x + a1x + ::: + ak x : 4. Gamma and q-Gamma functions: 1 − qx Γ(z + 1) = zΓ(z); Γ (x + 1) = Γ (x): q 1 − q q Alessandro Neri 19 June 2019 2 / 19 For n = k, det(V ) 6= 0 if and only if the αi 's are all distinct. jfα1; : : : ; αngj = n: In particular, all the k × k minors of V are non-zero. Vandermonde Matrix Let k ≤ n. 0 1 1 ::: 1 1 B α1 α2 : : : αn C B C B α2 α2 : : : α2 C V = B 1 2 n C B .
    [Show full text]
  • Arxiv:1805.06706V2 [Cs.IT]
    SYSTEMATIC ENCODERS FOR GENERALIZED GABIDULIN CODES AND THE q-ANALOGUE OF CAUCHY MATRICES ALESSANDRO NERI∗ Technical University of Munich, Germany Abstract. We characterize the generator matrix in standard form of generalized Gabidulin codes. The parametrization we get for the non-systematic part of this matrix coincides with the q-analogue of generalized Cauchy matrices, leading to the definition of q-Cauchy matrices. These matrices can be represented very conveniently and their representation allows to define new interesting subfamilies of generalized Gabidulin codes whose generator matrix is a structured matrix. In particular, as an application, we construct Gabidulin codes whose generator matrix is the concatenation of an identity block and a Toeplitz/Hankel matrix. In addition, our results allow to give a new efficient criterion to verify whether a rank metric code of dimension k and length n is a generalized Gabidulin code. This criterion is only based on the computation of the rank of one matrix and on the verification of the linear independence of two sets of elements and it requires O(m · F (k, n)) field operations, where F (k, n) is the cost of computing the reduced row echelon form of a k × n matrix. Moreover, we also provide a characterization of the generator matrix in standard form of general MRD codes. 1. Introduction Codes in the rank metric were introduced, independently, by Delsarte [13], Gabidulin [15] and Roth [37], although a similar notion can be traced back to Bergman [7]. However, only in the last ten years have they significantly gained interest, due to their application in network coding [45, 18].
    [Show full text]