Towards Completely Automated Glycan Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Towards Completely Automated Glycan Synthesis University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 11-22-2019 Towards Completely Automated Glycan Synthesis Matteo Panza University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Organic Chemistry Commons, Polymer and Organic Materials Commons, and the Polymer Chemistry Commons Recommended Citation Panza, Matteo, "Towards Completely Automated Glycan Synthesis" (2019). Dissertations. 907. https://irl.umsl.edu/dissertation/907 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Towards completely automated glycan synthesis By Matteo Panza Master of Science (Chemistry), University of Missouri-St. Louis, May 2017 Master of Science (Chemistry), University of Milan, Italy, October 2014 Bachelor of Science (Chemistry), University of Milan, Italy, October 2012 A Dissertation Submitted to the Graduate School of the UNIVERSITY OF MISSOURI – ST. LOUIS in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in CHEMISTRY December 2019 Dissertation Committee Prof. Alexei V. Demchenko, Ph.D. (Chair) Prof. Eike Bauer, Ph.D. Prof. Keith J. Stine, Ph.D. Prof. Chung F. Wong, Ph.D. ABSTRACT Towards completely automated glycan synthesis Matteo Panza Doctor of Philosophy, University of Missouri – St. Louis Prof. Alexei V. Demchenko, Advisor Carbohydrates are ubiquitous both in nature as biologically active compounds and in medicine as pharmaceuticals. Although there has been continued interest in the synthesis of carbohydrates, chemical methods require specialized knowledge and hence remain cumbersome. The need for development of rapid, efficient and operationally simple procedures has come to the fore. This dissertation focuses on the development of a fully automated platform that will enable both experts and non-specialists to perform the synthesis of glycans. Existing automated methods for the synthesis of oligosaccharides are highly sophisticated, operationally complex, and require significant user know-how. By contrast, high performance liquid chromatography (HPLC) equipment-based automation introduced by our lab represents a highly accessible method of synthesis. This approach offers operational simplicity by delivering all reagents using standard liquid handling components and convenient real-time reaction monitoring of every step using detectors and standard computer software and interface. Many operations still require the operator intervention, and the entire technology remains semi-manual. Building upon promising preliminary results, this dissertation aimed to generate a universal platform for the fully automated synthesis of glycans. To achieve the complete automation of the solid phase synthesis that has the potential to revolutionize glycan synthesis, this dissertation focuses on the following aspects: 1) the development of new concepts for chemical glycosylation applicable to stereoselective formation of challenging 1,2-cis glycosidic bonds; 2) implementation of autosamplers and switch valves as new components to achieve operator-less automation; and 3) the development of new chemically stable resins for solid phase synthesis. With these key developments, we have acquired a reliable and simple platform for fully-automated oligosaccharide synthesis. The proof of concept was assessed by the synthesis of a number of target glycans. Synthesis of ii carbohydrates and other classes of biomolecules using this user-friendly and fully- automated platform will accelerate discovery in many scientific disciplines, most prominently chemistry, automation, and therapeutic-agents development. iii ACKNOWLEDGEMENTS I have a long list of acknowledgments and I would like to begin thanking Prof. Alexei Demchenko. In these years he has been more than an advisor, he has been a mentor and a friend, guiding me through science and life decisions. His passion and enthusiasm for science and his curiosity have set an example for my future career. He has always devoted his time to make me feel welcomed in his lab and to my research to be productive. I would like to thank my committee members, Prof. Eike Bauer, Prof. Keith J. Stine and Prof. Chung F. Wong for their encouragement and their patience all throughout my PhD. I am thankful to Dr. Jagodige P. Yasomanee for training me during my first year in Glycoworld. I would like to especially thank Dr. Rensheng Luo for the help with NMR and low temperature experiments. Also, I am very thankful to the funding received towards my PhD from the National Institute of Health (NIH) and University of Missouri- St. Louis. I would like to thank all faculty and staff from the Department of Chemistry and Biochemistry at UMSL for all the knowledge I have gained and support throughout my studies at UMSL. My thanks and affection will always be to my second family, my Glycoworld present and former lab members, Dr. Salvo Pistorio, Dr. Xiao Jia, Dr. Satsawat Visansirikul (First), Dr. Michael Mannino, Dr. Tinghua Wang, Dr. Mithila Bandara, Scott Geringer, Catherine Alex, Samira Escopy, Ganesh Shrestha, Melanie Shadrick, Dr Crystal O’Neil and Dr. Yashapal Singh for the good time together and for making me feel welcomed in St. Louis. Last, I am grateful to my wife, Myriam, for all the patience, the support, the encouragement and the motivation. Thanks to my daughter for always making my days plenty of fun. I want to thank my parents, my brother, my sister and my relatives for always believing in me and helping me in this American adventure. Thank you to my close friends Marta, Andrea, Manu, Nene and many others who have always been here for me and my family. iv LIST OF ABBREVIATIONS Å ............................................................................................................................Ångström Ac ...............................................................................................................................Acetyl Ac2O...........................................................................................................Acetic anhydride AcOH ..................................................................................................................Acetic acid AgOTf ..........................................................................Silver(I) trifluoromethanesulfonate Ag2CO3........................................................................................................Silver carbonate BF3•OEt2 ......................................................................................Boron trifluoride etherate BH3•THF...........................................................................Borane tetrahydrofuran complex Bn ...............................................................................................................................Benzyl BnBr ............................................................................................................Benzyl bromide Br2 ...........................................................................................................................Bromine Bz .............................................................................................................................Benzoyl BzCl............................................................................................................Benzoyl chloride BzCN...........................................................................................................Benzoyl cyanide CaH2 ...........................................................................................................Calcium hydride CBn................................................................................................................2-Cyanobenzyl CCl3CN............................................................................................... Trichloroacetonitrile CDCl3 ...............................................................................................Deuterated chloroform CD3COCD3............................................................................................ Deuterated acetone CH2Cl2 .......................................................................................................Dichloromethane CH3CN................................................................................................................Acetonitrile ClCH2CH2Cl ..........................................................................................1,2-Dichloroethane v Cu(OTf)2.....................................................................Copper(II) trifluoromethanesulfonate δ .....................................................................................................................Chemical shift d ................................................................................................................................Doublet DBU.............................................................................1,8-Diazabicyclo[5.4.0]undec-7-ene DFT................................................................................................Density functional theory dd ...........................................................................................................Doublet of doublets DIPEA.......................................................................................N,N-Diisopropylethylamine DMAP .........................................................................................4-Dimethylaminopyridine
Recommended publications
  • 6-[18 F] Fluoro-L-DOPA: a Well-Established Neurotracer with Expanding Application Spectrum and Strongly Improved Radiosyntheses
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 674063, 12 pages http://dx.doi.org/10.1155/2014/674063 Review Article 6-[18F]Fluoro-L-DOPA: A Well-Established Neurotracer with Expanding Application Spectrum and Strongly Improved Radiosyntheses M. Pretze,1 C. Wängler,2 and B. Wängler1 1 Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany 2 Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany Correspondence should be addressed to B. Wangler;¨ [email protected] Received 26 February 2014; Revised 17 April 2014; Accepted 18 April 2014; Published 28 May 2014 Academic Editor: Olaf Prante Copyright © 2014 M. Pretze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 18 For many years, the main application of [ F]F-DOPA has been the PET imaging of neuropsychiatric diseases, movement disorders, and brain malignancies. Recent findings however point to very favorable results of this tracer for the imaging of other malignant diseases such as neuroendocrine tumors, pheochromocytoma, and pancreatic adenocarcinoma expanding its application spectrum. With the application of this tracer in neuroendocrine tumor imaging, improved radiosyntheses have been developed. Among these, 18 the no-carrier-added nucleophilic introduction of fluorine-18, especially, has gained increasing attention as it gives [ F]F-DOPA in higher specific activities and shorter reaction times by less intricate synthesis protocols.
    [Show full text]
  • Peptide Handbook a Guide to Peptide Design and Applications in Biomedical Research
    Peptide Handbook A Guide to Peptide Design and Applications in Biomedical Research First Edition www.GenScript.com GenScript USA Inc. 860 Centennial Ave. Piscataway, NJ 08854 USA Phone: 1-732-885-9188 Toll-Free: 1-877-436-7274 Fax: 1-732-885-5878 Table of Contents The Universe of Peptides Reliable Synthesis of High-Quality Peptides Molecular structure 3 by GenScript Characteristics 5 Categories and biological functions 8 Analytical methods 10 Application of Peptides Research in structural biology 12 Research in disease pathogenesis 12 Generating antibodies 13 FlexPeptideTM Peptide Synthesis Platform which takes advantage of the latest Vaccine development 14 peptide synthesis technologies generates a large capacity for the quick Drug discovery and development 15 synthesis of high-quality peptides in a variety of lengths, quantities, purities Immunotherapy 17 and modifications. Cell penetration-based applications 18 Anti-microorganisms applications 19 Total Quality Management System based on multiple rounds of MS and HPLC Tissue engineering and regenerative medicine 20 analyses during and after peptide synthesis ensures the synthesis of Cosmetics 21 high-quality peptides free of contaminants, and provides reports on peptide Food industry 21 solubility, quality and content. Synthesis of Peptides Diverse Delivery Options help customers plan their peptide-based research Chemical synthesis 23 according to their time schedule and with peace of mind. Microwave-assisted technology 24 ArgonShield™ Packing eliminates the experimental variation caused by Ligation technology 26 oxidization and deliquescence of custom peptides through an innovative Recombinant technology 28 Modifications packing and delivery technology. 28 Purification 30 Expert Support offered by Ph.D.-level scientists guides customers from Product identity and quality control 31 peptide design and synthesis to reconstitution and application.
    [Show full text]
  • UK Automated Synthesis Forum 2017 Agenda
    “The primary showcase of chemical technologies since 1996” UK Automated Synthesis Forum 2017 Agenda Tuesday, 7th November 2017 10:00am Introductory Remarks Jason Tierney, Charles River, Chair UKASF 10:10am Welcome Remarks Paul Kendall, Festo 10:20am Plenary Lecture: Earth, Wind, Fire and Light - New Technologies Enabling Chemical Innovation Dr. Ian W Davies, Princeton 11:20am Coffee & Networking Metabolite Synthesis and purification Chair: Andrew Ledgard (Lilly) / Paul Blaney (Concept Life Sciences) 11:40am The Generation and Identification of Biosynthetic Metabolites Dr. Scott Martin and Dr. Eva Lenz, AstraZeneca 12:00pm Reaction Screening Tools for Medicinal Chemistry Marc Bazin, Hepatochem 12:20pm Challenges associated with small scale purification of metabolites and impurities Ronan Cleary, Waters Ltd 12.40pm Lunch, Exhibition & Networking Flow Chemistry I Chair: Paul Turner (AZ) / John Taylor (Beatson Institute) 2:30pm Using Open-Source Hardware and Software Technologies to Automate Chemical Synthesis Dr. Matthew O’Brien, University of Keele. 2:50pm Practical Organic Electrosynthesis in Laboratory Flow Electrolysis Cell with Extended Channels: Milligrammes to Multigrammes/Hour Prof. Richard Brown, University of Southampton 3:10pm Research towards Automated Continuous Flow Peptide Synthesis (Vapourtec) Dr. Nikzad Nikbin, New Path Molecular 3:30pm Photochemical reactors for both batch and flow Martyn Fordham, Asynt/Uniqsis 3:50-4:10pm Break New Technologies I Jason Tierney (Charles River) / Tobias Mochel (Sygnature Discovery) “The primary showcase of chemical technologies since 1996” 4:10pm What could be driving the lab of the future and is the ‘Smart Lab’ really a thing? Paul Kendall, Festo 4:30pm ElectraSyn 2.0: Facilitating the mass adoption of electrochemistry for preparative organic synthesis Kevin Mann, IKA 4:50pm Mya 4, the new Reaction Station from Radleys Dr.
    [Show full text]
  • Optimisation of Synthesis, Purification and Reformulation of (R)-[N-Methyl-11C]PK11195 for in Vivo PET Imaging Studies
    Optimisation of Synthesis, Purification and Reformulation of (R)-[N-methyl-11C]PK11195 for In Vivo PET Imaging Studies Vítor Hugo Pereira Alves Integrated Master in Biomedical Engineering Physics Department Faculty of Sciences and Technology of University of Coimbra 2012 To my Parents, Optimisation of Synthesis, Purification and Reformulation of (R)-[N-methyl-11C]PK11195 for In Vivo PET Imaging Studies Vítor Hugo Pereira Alves Supervisor: Miguel de Sá e Sousa Castelo Branco Co-supervisor: Antero José Pena Afonso de Abrunhosa Dissertation presented to the Faculty of Sciences and Technology of the University of Coimbra to obtain a Master’s degree in Biomedical Engineering Physics Department Faculty of Sciences and Technology of University of Coimbra 2012 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without proper acknowledgement. i Acknowledgments First of all, I would like to express my gratitude to Professor Antero Abrunhosa, for the opportunity given to carry out this work, for all the knowledge and for the full confidence. More than a project supervisor, he was a friend and excellent professor for his support and encouragement to reach the defined goals. To Professor Miguel Castelo-Branco, director of the Institute for Nuclear Sciences Applied to Health and also supervisor of this work for all support and interest in this project. To Professor Francisco Alves, I am grateful for his full availability to help, and for all the times that I asked for carbon-11.
    [Show full text]
  • Combined Approaches to the Synthesis and Study of Glycoproteins
    REVIEW Combined Approaches to the Synthesis and Study of Glycoproteins Gonc¸alo J. L. Bernardes†, Bastien Castagner‡, and Peter H. Seeberger†,* †Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany, and ‡Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zu¨rich), Wolfgang-Pauli-Str. 10, 8093 Zu¨rich, Switzerland arbohydrates constitute a large and diverse class of biopolymers. For a long time the pri- ABSTRACT Carbohydrates are the basis for many therapeutic and diagnostic C mary role of carbohydrates in biology was strategies, yet the full potential of glycans in medicine has not been realized. The viewed as a source of energy or as an integral part of cel- study of the precise role of different carbohydrates, bound to either proteins or lip- lular structure. However, over recent decades, it has be- ids, is hampered by difficulties in accessing pure, well-defined glycoconjugates. come clear that the expression of complex carbohy- This Review highlights recent advances in glycobiology with a particular empha- drates in human cells is critical in the development and sis on oligosaccharide synthesis and conjugation techniques for the construction physiology of living systems (1−4). The mammalian gly- of homogeneous glycoconjugates. New methods for the study of proteinϪglycan come is thought to be complex, due to the inherent interactions such as carbohydrate arrays and in vivo visualization of glycosylation structural diversity of carbohydrate molecules (5). Na- pattern changes will also be addressed. The development of glycotherapeutics is ture uses this abundant repertoire of structures as spe- just beginning, and much remains to be understood about the relationship be- cific codes in several biological processes such as cellu- tween glycoconjugate structure and function.
    [Show full text]
  • Synthesis of Many Different Types of Organic Small Molecules Using One Automated Process
    RESEARCH | REPORTS ORGANIC SYNTHESIS ally synthesized in prior studies using this strategy (16–19). With this promising starting point, we set out Synthesis of many different types of to expand the scope of this platform to include all of the structures shown in Fig. 1A. Csp3-rich cyclic and polycyclic natural product frameworks such organic small molecules using one as 10 to 14 represent especially challenging tar- getsandthusrequiredastrategicadvance.Be- automated process causemanyofthesemoleculesarebiosynthesized via cyclization of modular linear precursors de- rived from iterative building block assembly Junqi Li,* Steven G. Ballmer,* Eric P. Gillis, Seiko Fujii, Michael J. Schmidt, (10–12), we hypothesized that an analogous linear- Andrea M. E. Palazzolo, Jonathan W. Lehmann, Greg F. Morehouse, Martin D. Burke† to-cyclized strategy might enable this platform to access many such structures. In this approach, Small-molecule synthesis usually relies on procedures that are highly customized for each the same building block assembly process is used target. A broadly applicable automated process could greatly increase the accessibility to generate a linear precursor, which is then of this class of compounds to enable investigations of their practical potential. Here (poly)cyclized into the topologically complex pro- we report the synthesis of 14 distinct classes of small molecules using the same fully duct. The stereochemical information in the build- automated process. This was achieved by strategically expanding the scope of a building ing blocks is first translated into linear precursors block–based synthesis platform to include even Csp3-rich polycyclic natural product via stereospecific couplings and then into the tar- frameworks and discovering a catch-and-release chromatographic purification protocol geted products via stereospecific and/or stereo- applicable to all of the corresponding intermediates.
    [Show full text]
  • Flow Chemistry in Contemporary Chemical Sciences: a Real Variety of Its Applications
    molecules Review Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications Marek Trojanowicz 1,2 1 Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03–195 Warsaw, Poland; [email protected] 2 Department of Chemistry, University of Warsaw, Pasteura 1, 02–093 Warsaw, Poland Academic Editor: Pawel Ko´scielniak Received: 17 February 2020; Accepted: 16 March 2020; Published: 21 March 2020 Abstract: Flow chemistry is an area of contemporary chemistry exploiting the hydrodynamic conditions of flowing liquids to provide particular environments for chemical reactions. These particular conditions of enhanced and strictly regulated transport of reagents, improved interface contacts, intensification of heat transfer, and safe operation with hazardous chemicals can be utilized in chemical synthesis, both for mechanization and automation of analytical procedures, and for the investigation of the kinetics of ultrafast reactions. Such methods are developed for more than half a century. In the field of chemical synthesis, they are used mostly in pharmaceutical chemistry for efficient syntheses of small amounts of active substances. In analytical chemistry, flow measuring systems are designed for environmental applications and industrial monitoring, as well as medical and pharmaceutical analysis, providing essential enhancement of the yield of analyses and precision of analytical determinations. The main concept of this review is to show the overlapping of development trends in the design of instrumentation and various ways of the utilization of specificity of chemical operations under flow conditions, especially for synthetic and analytical purposes, with a simultaneous presentation of the still rather limited correspondence between these two main areas of flow chemistry.
    [Show full text]
  • Download This Article PDF Format
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl Cite this: Chem. Sci.,2021,12,3194 † All publication charges for this article peptide segments used in native chemical ligation have been paid for by the Royal Society of Chemistry Skander A. Abboud, El hadji Cisse, Michel Doudeau, Hel´ `ene Ben´ edetti´ and Vincent Aucagne * One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the Received 1st November 2020 tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL Accepted 10th January 2021 reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment DOI: 10.1039/d0sc06001a counterparts, using a straightforward synthetic approach that can be easily automated from rsc.li/chemical-science commercially available building blocks, and applied it to a well-known problematic target, SUMO-2. Creative Commons Attribution 3.0 Unported Licence. Introduction however, these modications will permanently remain in the synthesized protein. Traceless approaches include the use of The advent of the native chemical ligation1 (NCL) reaction has acid-labile N-2-hydroxy-4-methoxybenzyl (Hmb) groups on 8 3d,e,9 revolutionized the eld of chemical protein synthesis by backbone amides, or Ser/Thr O-acyl isopeptide known to offering a simple strategy to assemble unprotected peptide inhibit aggregation, but the most widely used strategy is the 10 segments bearing mutually-reactive C-terminal thioesters and incorporation of a temporary hydrophilic “solubilizing tag”.
    [Show full text]
  • Addressing Delivery and Synthesis Challenges for Peptide-Based Cancer Vaccines
    Addressing delivery and synthesis challenges for peptide-based cancer vaccines By Rebecca Lynn Holden B.S. Chemistry Baylor University, 2015 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at the Massachusetts Institute of Technology September 2020 © 2020 Massachusetts Institute of Technology All rights reserved Signature of Author: ________________________________________________ Department of Chemistry July 20, 2020 Certified by: ______________________________________________________ Bradley L. Pentelute Associate Professor of Chemistry Thesis Supervisor Accepted by: _____________________________________________________ Adam Willard Associate Professor Graduate Officer 1 2 This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Elizabeth M. Nolan …………………………………………………………………. Thesis Committee Chair Ivan R. Cottrell Professor of Immunology Professor Bradley L. Pentelute………………………………………………………………….. Thesis Supervisor Associate Professor of Chemistry Catherine L. Drennan…………………………………………………………………………… Thesis Committee Member Professor of Biology and Chemistry, HHMI Investigator 3 4 Addressing delivery and synthesis challenges for peptide-based cancer vaccines By Rebecca Lynn Holden Submitted to the Department of Chemistry on July 20, 2020 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Abstract Therapeutic peptide vaccines have the potential to elicit and direct an anti-cancer T cell response, but their clinical efficacy has been limited in part by poor delivery to the lymphatic system, inefficient cell uptake, and scalable synthesis in the case of personalized vaccines. The work presented in this thesis explores several approaches to address these challenges. First, we use our fast-flow automated synthesis technology to confront the synthesis bottleneck for patient-specific ‘neoantigen’ vaccines, which have shown early promise but are hindered by slow production.
    [Show full text]
  • Advances in the Automated Synthesis of 6-[18F]Fluoro-L-DOPA Ângela C
    Neves et al. EJNMMI Radiopharmacy and Chemistry (2021) 6:11 EJNMMI Radiopharmacy https://doi.org/10.1186/s41181-021-00126-z and Chemistry REVIEW Open Access Advances in the automated synthesis of 6-[18F]Fluoro-L-DOPA Ângela C. B. Neves1, Ivanna Hrynchak1, Inês Fonseca1, Vítor H. P. Alves1, Mariette M. Pereira2, Amílcar Falcão1,3 and Antero J. Abrunhosa1* * Correspondence: [email protected] 1ICNAS/CIBIT — Institute for Nuclear Abstract Sciences Applied to Health, 18 University of Coimbra, Pólo das The neurotracer 6-[ F]FDOPA has been, for many years, a powerful tool in PET Ciências da Saúde, Azinhaga de imaging of neuropsychiatric diseases, movement disorders and brain malignancies. Santa Comba, 3000-548 Coimbra, More recently, it also demonstrated good results in the diagnosis of other Portugal Full list of author information is malignancies such as neuroendocrine tumours, pheochromocytoma or pancreatic available at the end of the article adenocarcinoma. The multiple clinical applications of this tracer fostered a very strong interest in the development of new and improved methods for its radiosynthesis. The no-carrier- added nucleophilic 18F-fluorination process has gained increasing attention, in recent years, due to the high molar activities obtained, when compared with the other methods although the radiochemical yield remains low (17–30%). This led to the development of several nucleophilic synthetic processes in order to obtain the product with molar activity, radiochemical yield and enantiomeric purity suitable for human PET studies. Automation of the synthetic processes is crucial for routine clinical use and compliance with GMP requirements. Nevertheless, the complexity of the synthesis makes the production challenging, increasing the chance of failure in routine production.
    [Show full text]
  • Synthesis of (Cyclo)Maltooligosaccharide-Based Glycosaminoglycan Mimetics and Their Interaction with Heparin Binding Growth Factors Rubal Ravinder
    Synthesis of (cyclo)maltooligosaccharide-based glycosaminoglycan mimetics and their interaction with heparin binding growth factors Rubal Ravinder To cite this version: Rubal Ravinder. Synthesis of (cyclo)maltooligosaccharide-based glycosaminoglycan mimetics and their interaction with heparin binding growth factors. Organic chemistry. Université Grenoble Alpes [2020- ..], 2020. English. NNT : 2020GRALV034. tel-03192820 HAL Id: tel-03192820 https://tel.archives-ouvertes.fr/tel-03192820 Submitted on 8 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES Spécialité : Chimie organique Arrêté ministériel : 25 mai 2016 Présentée par Rubal RAVINDER Thèse dirigée par Sami HALILA, Chargé de Recherche, CNRS, et codirigée par Romain VIVÈS, Directeur de Recherche, CNRS préparée au sein du Centre de Recherche sur les Macromolécules Végétales (CERMAV) et de l’Institut de Biologie Structurale (IBS) dans l'École Doctorale Chimie et Sciences du Vivant Synthèse de mimes de glycosaminoglycanes
    [Show full text]
  • Electrosynthesis 2.0 in 1,1,1,3,3,3‐Hexafluoroisopropanol/Amine Mixtures
    Reviews ChemElectroChem doi.org/10.1002/celc.202000761 1 2 3 Electrosynthesis 2.0 in 1,1,1,3,3,3- 4 5 Hexafluoroisopropanol/Amine Mixtures 6 [a, b] [a] [a, b] 7 Johannes L. Röckl, Maurice Dörr, and Siegfried R. Waldvogel* 8 In memory of Prof. Dr. Dennis G. Peters 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ChemElectroChem 2020, 7, 3686–3694 3686 © 2020 The Authors. Published by Wiley-VCH GmbH Wiley VCH Dienstag, 15.09.2020 2018 / 172424 [S. 3686/3694] 1 Reviews ChemElectroChem doi.org/10.1002/celc.202000761 1 The intention of this review is to highlight the innovative mixture carbon-carbon homo- and cross-coupling reactions of 2 electrolyte combination of 1,1,1,3,3,3-hexafluoroisopropanol arenes and phenols have been established with substrates that 3 (HFIP) with tertiary nitrogen bases in electro-organic synthesis. have not been previously susceptible to the anodic dehydro- 4 This easy applicable and promising mixture is not yet well genative coupling reaction. The intermediate installation of 5 established in electro-organic synthesis, but expands the highly fluorinated alkoxy moieties can be exploited for subse- 6 various possibilities in the latter. Combinations of fluorinated quent conversions as well as various benzylic functionalization, 7 alcohols with nitrogen bases form highly conductive electrolyte including asymmetric transformations. These transformations 8 systems, which can be evaporated completely.
    [Show full text]