Synthesis of (Cyclo)Maltooligosaccharide-Based Glycosaminoglycan Mimetics and Their Interaction with Heparin Binding Growth Factors Rubal Ravinder

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of (Cyclo)Maltooligosaccharide-Based Glycosaminoglycan Mimetics and Their Interaction with Heparin Binding Growth Factors Rubal Ravinder Synthesis of (cyclo)maltooligosaccharide-based glycosaminoglycan mimetics and their interaction with heparin binding growth factors Rubal Ravinder To cite this version: Rubal Ravinder. Synthesis of (cyclo)maltooligosaccharide-based glycosaminoglycan mimetics and their interaction with heparin binding growth factors. Organic chemistry. Université Grenoble Alpes [2020- ..], 2020. English. NNT : 2020GRALV034. tel-03192820 HAL Id: tel-03192820 https://tel.archives-ouvertes.fr/tel-03192820 Submitted on 8 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES Spécialité : Chimie organique Arrêté ministériel : 25 mai 2016 Présentée par Rubal RAVINDER Thèse dirigée par Sami HALILA, Chargé de Recherche, CNRS, et codirigée par Romain VIVÈS, Directeur de Recherche, CNRS préparée au sein du Centre de Recherche sur les Macromolécules Végétales (CERMAV) et de l’Institut de Biologie Structurale (IBS) dans l'École Doctorale Chimie et Sciences du Vivant Synthèse de mimes de glycosaminoglycanes sulfatés à base de (cyclo)maltooligosaccharides et leur interaction avec des facteurs de croissance liant l’héparine Synthesis of (cyclo)maltooligosaccharide- based sulfated glycosaminoglycan mimetics and their interaction with heparin binding growth factors Thèse soutenue publiquement le 7 décembre 2020 devant le jury composé de : Madame Angela RUSSELL Professeure, St John’s College, University of Oxford, Rapportrice Monsieur José KOVENSKY Professeur des Universités, Université de Picardie, Rapporteur Madame Chrystel LOPIN-BON Professeure des Universités, Université d’Orléans, Examinatrice Madame Sandrine PY Directrice de Recherche, CNRS, Examinatrice, Présidente du jury Monsieur Romain VIVÈS Directeur de Recherche, CNRS, Co-directeur de thèse Monsieur Sami HALILA Chargé de Recherche, CNRS, Directeur de thèse Remerciements Ce manuscrit est l’aboutissement de trois années de recherche, en qualité de doctorante principalement au sein du Centre de Recherche sur les Macromolécules Végétales (équipe Auto-assemblage de Glycopolymères, Grenoble) mais aussi au sein de l’Institut de Biologie Structurale (groupe Structure et Activité des GlycosAminoGlycanes, Grenoble). Je tiens tout d’abord à remercier mon directeur de thèse Monsieur Sami HALILA pour m’avoir accueilli au sein du CERMAV. Je le remercie pour son accompagnement, ses idées judicieuses, sa disponibilité et son soutien au cours de ces trois années malgré toutes les difficultés que j’ai pu rencontrer durant ce projet ambitieux et pluridisciplinaire. J’ai énormément appris en glycochimie, et ma passion pour ce domaine n’en a été que renforcée. Sa bonne humeur et son « humour » m’ont aidé à avancer autant sur le plan personnel que professionnel. Je tiens également à remercier mon co-directeur de thèse Monsieur Romain VIVÈS pour m’avoir accueilli au sein de son équipe à l’IBS. Je le remercie pour sa disponibilité, sa bonne humeur et son accompagnement, et j’espère avoir l’opportunité de faire quelques essaies à l’IBS pour renforcer mes compétences. Je le remercie d’avoir pris du temps pour m’expliquer la complexité des glycosaminoglycanes tout au long du projet, mais aussi de m’avoir aidé à comprendre et interpréter les résultats en biologie lors de la rédaction. J’aimerais ensuite remercier Madame Angela RUSSELL et Monsieur José KOVENSKY, rapporteurs de mon jury, pour avoir accepté de juger ce travail avec bienveillance et pour la discussion qui a suivie la soutenance. Je remercie également Madame Chrystel LOPIN-BON pour avoir examiné ce travail et Madame Sandrine PY, pour avoir en plus présider le jury et pour l’aide pour les réactions d’hydrogénolyse effectuées au sein du laboratoire DCM (Grenoble). Je souhaite remercier Mesdames Patricia ALBANESE et Carine-Manuela BORGES au laboratoire Gly- CRRET, Croissance, Réparation et Régénération Tissulaires, pour avoir effectué les tests biologiques, pour nos discussions enrichissantes et pour le précieux temps qu’elles m’ont accordé pour m’expliquer les tests et les résultats obtenus. Mes remerciements s’adressent également à tous les permanents du laboratoire, qui ont créé une atmosphère de travail agréable. J’ai passé de très agréables moments, leurs conseils et leur bienveillance m’ont énormément aidé. Un très grand merci à tous les non-permanents (anciens et nouveaux) de l’équipe et plus particulièrement à Marie CARRIERE, Charlène EFFLIGENIR, Sophie RENAUD, Justine SOLIER, Cornélia LUNTADILA (les PCG gurlz !), mais aussi à Robin BRAHMI, Shun YAO, Hong LI, Ahlem MNASRI et Julie PERRIN pour cette aventure et ces moments riches en émotions ! Vous avez énormément contribué à l’ambiance de l’équipe, vous m’avez beaucoup aidé, et fait apprécier mon séjour à Grenoble. Merci également à tous les non-permanents que j’ai rencontré au laboratoire (et je m’excuse d’avance pour ceux que j’ai pu oublier) : Dania, Claire, Simon, Raphael, Vanina, Marie-Carole, Paul C., Fabien, Maeva, Rafael, Robin, Pierre, Antoine, Paul R., Axel, Laurent, Emeline, Céline, Julien, etc. J’ai adoré discuter avec vous tous, votre gentillesse m’émue et j’espère qu’on aura l’occasion de fêter mon diplôme tous ensemble ! Je souhaite exprimer mes profonds remerciements à tous mes amis (dont Emilie, Sylvie, Pauline, Samuel, Merrick et Ghada). Votre présence me fait oublier mes soucis et m’aide à avancer dans ma vie. 4 Je remercie ma famille, et plus particulièrement mon petit frère, Ravneet, le soleil de ma vie. Ils m’ont appris à toujours me battre, et c’est grâce à eux que j’ai entrepris cette thèse. Aussi un grand merci à la famille de mon conjoint pour m’avoir si chaleureusement accueilli et supporté. Vous êtes des personnes en or. Enfin, je voudrais remercier mon conjoint, Olivier : merci d’exister. 5 Résumé en français Chapitre 1 : Contexte L’arthrose est une maladie commune affectant les articulations de l’organisme. Dans un organisme sain, l’articulation se compose de deux extrémités d’os protégées par du tissu cartilagineux. Celui-ci est principalement formé d’une matrice extra-cellulaire riche en fibre de collagène, en protéoglycanes (PGs) et en glycosaminoglycanes (GAGs). Un seul type de cellule est présent dans ce tissu avasculaire, les chondrocytes, en charge de la production et la dégradation des composés matriciels et donc de l’intégrité du tissu. C’est lorsque l’équilibre établi par les chondrocytes est rompu que l’arthrose a lieu avec pour principal effet la dégradation du tissu cartilagineux et notamment des protéoglycanes et glycosaminoglycanes. Lors de stades avancés, la dégradation du cartilage outrepasse la production d’éléments matriciels. Les chondrocytes produisent alors des composés matriciels structurellement altérés incapables de posséder des fonctions physiologiques ce qui contribue à l’inflammation du tissu et à des douleurs au niveau des articulations. L’arthrose est actuellement la maladie rhumatismale la plus commune dans le monde et est reconnue comme un fardeau pour la santé publique mondiale. Le nombre de patients atteint d’arthrose augmente tous les jours dû au vieillissement de la population et à l’augmentation de la prévalence de l’obésité. Malheureusement, seuls des traitements symptomatiques sont prescrits aux patients car aucun traitement curatif n’a été mis au point à ce jour. Les thérapies actuelles en développement se basent sur l’ingénierie tissulaire avec la mise en place de réseaux de protéoglycanes et glycosaminoglycanes artificiels ou mimés dans lesquelles des cellules souches mésenchymateuses seraient introduites afin qu’elles puissent se différencier en chondrocytes produisant des éléments matriciels « sains » dans un environnement non-inflammatoire. Cette stratégie a donc été explorée dans le cadre de notre projet. Les GAGs sont de longues chaines linéaires de polysaccharides naturels composées de la répétition d’un motif disaccharidique où chaque monosaccharide de la chaine peut être acétylé, épimérisé ou sulfaté à différentes positions du sucre. La nature du disaccharide, le type de modification ainsi que la position des groupements sulfates sur chaque monomère de sucre sont la source de l’extrême diversité structurale des glycosaminoglycanes. Ces biomolécules hautement chargées négativement sont ubiquitaires dans l’organisme et possèdent une multitude de fonctions structurales et fonctionnelles telles que la croissance, la différentiation et la signalisation cellulaire ou encore la régulation de la bioactivité d’une multitude de protéines dont les facteurs de croissance. 6 Les GAGs sont communément retrouvés attachés à un corps protéique formant ainsi des PGs. Cette structure leur confère de la multivalence, propriété indispensable pour exercer leurs activités. Le rôle des PGs dans l’organisme est principalement lié aux chaines de GAGs qu’ils portent. De par leur implication dans une large gamme de processus physio- et patho-logiques, les GAGs et les PGs sont connus pour être de bonnes cibles thérapeutiques et ont d’ailleurs été étudiés dans le cadre de la croissance des cellules
Recommended publications
  • 6-[18 F] Fluoro-L-DOPA: a Well-Established Neurotracer with Expanding Application Spectrum and Strongly Improved Radiosyntheses
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 674063, 12 pages http://dx.doi.org/10.1155/2014/674063 Review Article 6-[18F]Fluoro-L-DOPA: A Well-Established Neurotracer with Expanding Application Spectrum and Strongly Improved Radiosyntheses M. Pretze,1 C. Wängler,2 and B. Wängler1 1 Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany 2 Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany Correspondence should be addressed to B. Wangler;¨ [email protected] Received 26 February 2014; Revised 17 April 2014; Accepted 18 April 2014; Published 28 May 2014 Academic Editor: Olaf Prante Copyright © 2014 M. Pretze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 18 For many years, the main application of [ F]F-DOPA has been the PET imaging of neuropsychiatric diseases, movement disorders, and brain malignancies. Recent findings however point to very favorable results of this tracer for the imaging of other malignant diseases such as neuroendocrine tumors, pheochromocytoma, and pancreatic adenocarcinoma expanding its application spectrum. With the application of this tracer in neuroendocrine tumor imaging, improved radiosyntheses have been developed. Among these, 18 the no-carrier-added nucleophilic introduction of fluorine-18, especially, has gained increasing attention as it gives [ F]F-DOPA in higher specific activities and shorter reaction times by less intricate synthesis protocols.
    [Show full text]
  • Peptide Handbook a Guide to Peptide Design and Applications in Biomedical Research
    Peptide Handbook A Guide to Peptide Design and Applications in Biomedical Research First Edition www.GenScript.com GenScript USA Inc. 860 Centennial Ave. Piscataway, NJ 08854 USA Phone: 1-732-885-9188 Toll-Free: 1-877-436-7274 Fax: 1-732-885-5878 Table of Contents The Universe of Peptides Reliable Synthesis of High-Quality Peptides Molecular structure 3 by GenScript Characteristics 5 Categories and biological functions 8 Analytical methods 10 Application of Peptides Research in structural biology 12 Research in disease pathogenesis 12 Generating antibodies 13 FlexPeptideTM Peptide Synthesis Platform which takes advantage of the latest Vaccine development 14 peptide synthesis technologies generates a large capacity for the quick Drug discovery and development 15 synthesis of high-quality peptides in a variety of lengths, quantities, purities Immunotherapy 17 and modifications. Cell penetration-based applications 18 Anti-microorganisms applications 19 Total Quality Management System based on multiple rounds of MS and HPLC Tissue engineering and regenerative medicine 20 analyses during and after peptide synthesis ensures the synthesis of Cosmetics 21 high-quality peptides free of contaminants, and provides reports on peptide Food industry 21 solubility, quality and content. Synthesis of Peptides Diverse Delivery Options help customers plan their peptide-based research Chemical synthesis 23 according to their time schedule and with peace of mind. Microwave-assisted technology 24 ArgonShield™ Packing eliminates the experimental variation caused by Ligation technology 26 oxidization and deliquescence of custom peptides through an innovative Recombinant technology 28 Modifications packing and delivery technology. 28 Purification 30 Expert Support offered by Ph.D.-level scientists guides customers from Product identity and quality control 31 peptide design and synthesis to reconstitution and application.
    [Show full text]
  • UK Automated Synthesis Forum 2017 Agenda
    “The primary showcase of chemical technologies since 1996” UK Automated Synthesis Forum 2017 Agenda Tuesday, 7th November 2017 10:00am Introductory Remarks Jason Tierney, Charles River, Chair UKASF 10:10am Welcome Remarks Paul Kendall, Festo 10:20am Plenary Lecture: Earth, Wind, Fire and Light - New Technologies Enabling Chemical Innovation Dr. Ian W Davies, Princeton 11:20am Coffee & Networking Metabolite Synthesis and purification Chair: Andrew Ledgard (Lilly) / Paul Blaney (Concept Life Sciences) 11:40am The Generation and Identification of Biosynthetic Metabolites Dr. Scott Martin and Dr. Eva Lenz, AstraZeneca 12:00pm Reaction Screening Tools for Medicinal Chemistry Marc Bazin, Hepatochem 12:20pm Challenges associated with small scale purification of metabolites and impurities Ronan Cleary, Waters Ltd 12.40pm Lunch, Exhibition & Networking Flow Chemistry I Chair: Paul Turner (AZ) / John Taylor (Beatson Institute) 2:30pm Using Open-Source Hardware and Software Technologies to Automate Chemical Synthesis Dr. Matthew O’Brien, University of Keele. 2:50pm Practical Organic Electrosynthesis in Laboratory Flow Electrolysis Cell with Extended Channels: Milligrammes to Multigrammes/Hour Prof. Richard Brown, University of Southampton 3:10pm Research towards Automated Continuous Flow Peptide Synthesis (Vapourtec) Dr. Nikzad Nikbin, New Path Molecular 3:30pm Photochemical reactors for both batch and flow Martyn Fordham, Asynt/Uniqsis 3:50-4:10pm Break New Technologies I Jason Tierney (Charles River) / Tobias Mochel (Sygnature Discovery) “The primary showcase of chemical technologies since 1996” 4:10pm What could be driving the lab of the future and is the ‘Smart Lab’ really a thing? Paul Kendall, Festo 4:30pm ElectraSyn 2.0: Facilitating the mass adoption of electrochemistry for preparative organic synthesis Kevin Mann, IKA 4:50pm Mya 4, the new Reaction Station from Radleys Dr.
    [Show full text]
  • Optimisation of Synthesis, Purification and Reformulation of (R)-[N-Methyl-11C]PK11195 for in Vivo PET Imaging Studies
    Optimisation of Synthesis, Purification and Reformulation of (R)-[N-methyl-11C]PK11195 for In Vivo PET Imaging Studies Vítor Hugo Pereira Alves Integrated Master in Biomedical Engineering Physics Department Faculty of Sciences and Technology of University of Coimbra 2012 To my Parents, Optimisation of Synthesis, Purification and Reformulation of (R)-[N-methyl-11C]PK11195 for In Vivo PET Imaging Studies Vítor Hugo Pereira Alves Supervisor: Miguel de Sá e Sousa Castelo Branco Co-supervisor: Antero José Pena Afonso de Abrunhosa Dissertation presented to the Faculty of Sciences and Technology of the University of Coimbra to obtain a Master’s degree in Biomedical Engineering Physics Department Faculty of Sciences and Technology of University of Coimbra 2012 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without proper acknowledgement. i Acknowledgments First of all, I would like to express my gratitude to Professor Antero Abrunhosa, for the opportunity given to carry out this work, for all the knowledge and for the full confidence. More than a project supervisor, he was a friend and excellent professor for his support and encouragement to reach the defined goals. To Professor Miguel Castelo-Branco, director of the Institute for Nuclear Sciences Applied to Health and also supervisor of this work for all support and interest in this project. To Professor Francisco Alves, I am grateful for his full availability to help, and for all the times that I asked for carbon-11.
    [Show full text]
  • Combined Approaches to the Synthesis and Study of Glycoproteins
    REVIEW Combined Approaches to the Synthesis and Study of Glycoproteins Gonc¸alo J. L. Bernardes†, Bastien Castagner‡, and Peter H. Seeberger†,* †Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany, and ‡Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zu¨rich), Wolfgang-Pauli-Str. 10, 8093 Zu¨rich, Switzerland arbohydrates constitute a large and diverse class of biopolymers. For a long time the pri- ABSTRACT Carbohydrates are the basis for many therapeutic and diagnostic C mary role of carbohydrates in biology was strategies, yet the full potential of glycans in medicine has not been realized. The viewed as a source of energy or as an integral part of cel- study of the precise role of different carbohydrates, bound to either proteins or lip- lular structure. However, over recent decades, it has be- ids, is hampered by difficulties in accessing pure, well-defined glycoconjugates. come clear that the expression of complex carbohy- This Review highlights recent advances in glycobiology with a particular empha- drates in human cells is critical in the development and sis on oligosaccharide synthesis and conjugation techniques for the construction physiology of living systems (1−4). The mammalian gly- of homogeneous glycoconjugates. New methods for the study of proteinϪglycan come is thought to be complex, due to the inherent interactions such as carbohydrate arrays and in vivo visualization of glycosylation structural diversity of carbohydrate molecules (5). Na- pattern changes will also be addressed. The development of glycotherapeutics is ture uses this abundant repertoire of structures as spe- just beginning, and much remains to be understood about the relationship be- cific codes in several biological processes such as cellu- tween glycoconjugate structure and function.
    [Show full text]
  • Synthesis of Many Different Types of Organic Small Molecules Using One Automated Process
    RESEARCH | REPORTS ORGANIC SYNTHESIS ally synthesized in prior studies using this strategy (16–19). With this promising starting point, we set out Synthesis of many different types of to expand the scope of this platform to include all of the structures shown in Fig. 1A. Csp3-rich cyclic and polycyclic natural product frameworks such organic small molecules using one as 10 to 14 represent especially challenging tar- getsandthusrequiredastrategicadvance.Be- automated process causemanyofthesemoleculesarebiosynthesized via cyclization of modular linear precursors de- rived from iterative building block assembly Junqi Li,* Steven G. Ballmer,* Eric P. Gillis, Seiko Fujii, Michael J. Schmidt, (10–12), we hypothesized that an analogous linear- Andrea M. E. Palazzolo, Jonathan W. Lehmann, Greg F. Morehouse, Martin D. Burke† to-cyclized strategy might enable this platform to access many such structures. In this approach, Small-molecule synthesis usually relies on procedures that are highly customized for each the same building block assembly process is used target. A broadly applicable automated process could greatly increase the accessibility to generate a linear precursor, which is then of this class of compounds to enable investigations of their practical potential. Here (poly)cyclized into the topologically complex pro- we report the synthesis of 14 distinct classes of small molecules using the same fully duct. The stereochemical information in the build- automated process. This was achieved by strategically expanding the scope of a building ing blocks is first translated into linear precursors block–based synthesis platform to include even Csp3-rich polycyclic natural product via stereospecific couplings and then into the tar- frameworks and discovering a catch-and-release chromatographic purification protocol geted products via stereospecific and/or stereo- applicable to all of the corresponding intermediates.
    [Show full text]
  • Flow Chemistry in Contemporary Chemical Sciences: a Real Variety of Its Applications
    molecules Review Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications Marek Trojanowicz 1,2 1 Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03–195 Warsaw, Poland; [email protected] 2 Department of Chemistry, University of Warsaw, Pasteura 1, 02–093 Warsaw, Poland Academic Editor: Pawel Ko´scielniak Received: 17 February 2020; Accepted: 16 March 2020; Published: 21 March 2020 Abstract: Flow chemistry is an area of contemporary chemistry exploiting the hydrodynamic conditions of flowing liquids to provide particular environments for chemical reactions. These particular conditions of enhanced and strictly regulated transport of reagents, improved interface contacts, intensification of heat transfer, and safe operation with hazardous chemicals can be utilized in chemical synthesis, both for mechanization and automation of analytical procedures, and for the investigation of the kinetics of ultrafast reactions. Such methods are developed for more than half a century. In the field of chemical synthesis, they are used mostly in pharmaceutical chemistry for efficient syntheses of small amounts of active substances. In analytical chemistry, flow measuring systems are designed for environmental applications and industrial monitoring, as well as medical and pharmaceutical analysis, providing essential enhancement of the yield of analyses and precision of analytical determinations. The main concept of this review is to show the overlapping of development trends in the design of instrumentation and various ways of the utilization of specificity of chemical operations under flow conditions, especially for synthetic and analytical purposes, with a simultaneous presentation of the still rather limited correspondence between these two main areas of flow chemistry.
    [Show full text]
  • Download This Article PDF Format
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl Cite this: Chem. Sci.,2021,12,3194 † All publication charges for this article peptide segments used in native chemical ligation have been paid for by the Royal Society of Chemistry Skander A. Abboud, El hadji Cisse, Michel Doudeau, Hel´ `ene Ben´ edetti´ and Vincent Aucagne * One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the Received 1st November 2020 tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL Accepted 10th January 2021 reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment DOI: 10.1039/d0sc06001a counterparts, using a straightforward synthetic approach that can be easily automated from rsc.li/chemical-science commercially available building blocks, and applied it to a well-known problematic target, SUMO-2. Creative Commons Attribution 3.0 Unported Licence. Introduction however, these modications will permanently remain in the synthesized protein. Traceless approaches include the use of The advent of the native chemical ligation1 (NCL) reaction has acid-labile N-2-hydroxy-4-methoxybenzyl (Hmb) groups on 8 3d,e,9 revolutionized the eld of chemical protein synthesis by backbone amides, or Ser/Thr O-acyl isopeptide known to offering a simple strategy to assemble unprotected peptide inhibit aggregation, but the most widely used strategy is the 10 segments bearing mutually-reactive C-terminal thioesters and incorporation of a temporary hydrophilic “solubilizing tag”.
    [Show full text]
  • Addressing Delivery and Synthesis Challenges for Peptide-Based Cancer Vaccines
    Addressing delivery and synthesis challenges for peptide-based cancer vaccines By Rebecca Lynn Holden B.S. Chemistry Baylor University, 2015 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at the Massachusetts Institute of Technology September 2020 © 2020 Massachusetts Institute of Technology All rights reserved Signature of Author: ________________________________________________ Department of Chemistry July 20, 2020 Certified by: ______________________________________________________ Bradley L. Pentelute Associate Professor of Chemistry Thesis Supervisor Accepted by: _____________________________________________________ Adam Willard Associate Professor Graduate Officer 1 2 This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Elizabeth M. Nolan …………………………………………………………………. Thesis Committee Chair Ivan R. Cottrell Professor of Immunology Professor Bradley L. Pentelute………………………………………………………………….. Thesis Supervisor Associate Professor of Chemistry Catherine L. Drennan…………………………………………………………………………… Thesis Committee Member Professor of Biology and Chemistry, HHMI Investigator 3 4 Addressing delivery and synthesis challenges for peptide-based cancer vaccines By Rebecca Lynn Holden Submitted to the Department of Chemistry on July 20, 2020 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Abstract Therapeutic peptide vaccines have the potential to elicit and direct an anti-cancer T cell response, but their clinical efficacy has been limited in part by poor delivery to the lymphatic system, inefficient cell uptake, and scalable synthesis in the case of personalized vaccines. The work presented in this thesis explores several approaches to address these challenges. First, we use our fast-flow automated synthesis technology to confront the synthesis bottleneck for patient-specific ‘neoantigen’ vaccines, which have shown early promise but are hindered by slow production.
    [Show full text]
  • Advances in the Automated Synthesis of 6-[18F]Fluoro-L-DOPA Ângela C
    Neves et al. EJNMMI Radiopharmacy and Chemistry (2021) 6:11 EJNMMI Radiopharmacy https://doi.org/10.1186/s41181-021-00126-z and Chemistry REVIEW Open Access Advances in the automated synthesis of 6-[18F]Fluoro-L-DOPA Ângela C. B. Neves1, Ivanna Hrynchak1, Inês Fonseca1, Vítor H. P. Alves1, Mariette M. Pereira2, Amílcar Falcão1,3 and Antero J. Abrunhosa1* * Correspondence: [email protected] 1ICNAS/CIBIT — Institute for Nuclear Abstract Sciences Applied to Health, 18 University of Coimbra, Pólo das The neurotracer 6-[ F]FDOPA has been, for many years, a powerful tool in PET Ciências da Saúde, Azinhaga de imaging of neuropsychiatric diseases, movement disorders and brain malignancies. Santa Comba, 3000-548 Coimbra, More recently, it also demonstrated good results in the diagnosis of other Portugal Full list of author information is malignancies such as neuroendocrine tumours, pheochromocytoma or pancreatic available at the end of the article adenocarcinoma. The multiple clinical applications of this tracer fostered a very strong interest in the development of new and improved methods for its radiosynthesis. The no-carrier- added nucleophilic 18F-fluorination process has gained increasing attention, in recent years, due to the high molar activities obtained, when compared with the other methods although the radiochemical yield remains low (17–30%). This led to the development of several nucleophilic synthetic processes in order to obtain the product with molar activity, radiochemical yield and enantiomeric purity suitable for human PET studies. Automation of the synthetic processes is crucial for routine clinical use and compliance with GMP requirements. Nevertheless, the complexity of the synthesis makes the production challenging, increasing the chance of failure in routine production.
    [Show full text]
  • Electrosynthesis 2.0 in 1,1,1,3,3,3‐Hexafluoroisopropanol/Amine Mixtures
    Reviews ChemElectroChem doi.org/10.1002/celc.202000761 1 2 3 Electrosynthesis 2.0 in 1,1,1,3,3,3- 4 5 Hexafluoroisopropanol/Amine Mixtures 6 [a, b] [a] [a, b] 7 Johannes L. Röckl, Maurice Dörr, and Siegfried R. Waldvogel* 8 In memory of Prof. Dr. Dennis G. Peters 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ChemElectroChem 2020, 7, 3686–3694 3686 © 2020 The Authors. Published by Wiley-VCH GmbH Wiley VCH Dienstag, 15.09.2020 2018 / 172424 [S. 3686/3694] 1 Reviews ChemElectroChem doi.org/10.1002/celc.202000761 1 The intention of this review is to highlight the innovative mixture carbon-carbon homo- and cross-coupling reactions of 2 electrolyte combination of 1,1,1,3,3,3-hexafluoroisopropanol arenes and phenols have been established with substrates that 3 (HFIP) with tertiary nitrogen bases in electro-organic synthesis. have not been previously susceptible to the anodic dehydro- 4 This easy applicable and promising mixture is not yet well genative coupling reaction. The intermediate installation of 5 established in electro-organic synthesis, but expands the highly fluorinated alkoxy moieties can be exploited for subse- 6 various possibilities in the latter. Combinations of fluorinated quent conversions as well as various benzylic functionalization, 7 alcohols with nitrogen bases form highly conductive electrolyte including asymmetric transformations. These transformations 8 systems, which can be evaporated completely.
    [Show full text]
  • Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials
    Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials Thomas F. Jaramillo1, Sung-Hyeon Baeck1, Alan Kleiman-Shwarsctein1, Galen D. Stucky (PI)2, Eric W. McFarland (PI)1, 1 Dept. of Chemical Engineering, 2 Dept. of Chemistry & Biochemistry, University of California, Santa Barbara DOE Hydrogen Program DE-FC36-01GO11092 (September 2001 – April 2004) This presentation does not contain any proprietary or confidential information. Project Objectives: Year 3 ¾ Continue synthesis and screening of libraries designed in previous years and follow promising (lead) materials as they are identified. ¾ Explore the composition-function relationship of dopants in ZnO hosts. ¾ Investigate metal oxide libraries for electrocatalytic hydrogen production and expand our high-throughput screening to include electrocatalytic overpotential as a routine screen. ¾ Develop a high-throughput optical screening system to measure the effective bandgap of metal oxides in libraries. ¾ Synthesize and screen model libraries optically for bandgap as a primary screen; create secondary libraries of compositions with solar spectrum adsorption and subsequently screen the derivate libraries for appropriate redox/flatband levels and finally for H2 production. ¾ Continue to expand our investigations of nanoporous materials with the emphasis on ZnO, WO3 and TiO2. ¾ Participate as a member of the USA Annex-14 Expert Group in the International Energy Agency’s (IEA’s) Hydrogen Implementing Agreement on photoelectrolytic hydrogen production. Photoelectrocatalysis B Reduction B+ A Oxidation Materials “Issues” A- Absorbance Bulk ~ Structural Charge Transport (e-/h+) Particulates Photoelectrodes Surface States Surface Electrocatalysis Band Structure Energetics Stability and Cost No presently known materials are suitable Photoelectrochemical H2 Economics ~ 1000 W/m2 available for harvesting. “useful flux” ~ 1021 photons/m2-s day averaged @ > 1.5 eV Solar Energy Spectrum (AM of 1.5) In Terms of Hydrogen for example Number of Photons vs Photon Energy T.
    [Show full text]