Proforma Reports for Applications to Clear Native Vegetation Under The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transline Infrastructure Corridor Vegetation and Flora Survey
TROPICANA GOLD PROJECT Tropicana – Transline Infrastructure Corridor Vegetation and Flora Survey 025 Wellington Street WEST PERTH WA 6005 phone: 9322 1944 fax: 9322 1599 ACN 088 821 425 ABN 63 088 821 425 www.ecologia.com.au Tropicana Gold Project Tropicana Joint Venture Tropicana-Transline Infrastructure Corridor: Vegetation and Flora Survey July 2009 Tropicana Gold Project Tropicana-Transline Infrastructure Corridor Flora and Vegetation Survey © ecologia Environment (2009). Reproduction of this report in whole or in part by electronic, mechanical or chemical means, including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of ecologia Environment and/or AngloGold Ashanti Australia. Restrictions on Use This report has been prepared specifically for AngloGold Ashanti Australia. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of ecologia Environment and/or AngloGold Ashanti Australia. ecologia Environment 1025 Wellington St West Perth WA 6005 Ph: 08 9322 1944 Fax: 08 9322 1599 Email: [email protected] i Tropicana Gold Project Tropicana-Transline Infrastructure Corridor Flora and Vegetation Survey Executive Summary The Tropicana JV (TJV) is currently undertaking pre-feasibility studies on the viability of establishing the Tropicana Gold Project (TGP), which is centred on the Tropicana and Havana gold prospects. The proposed TGP is located approximately 330 km east north-east of Kalgoorlie, and 15 km west of the Plumridge Lakes Nature Reserve, on the western edge of the Great Victoria Desert (GVD) biogeographic region of Western Australia. -
Background Detailed Flora and Vegetation Assessment
Our ref: EEN18041.003 Level 2, 27-31 Troode Street West Perth WA 6005 T +61 8 9211 1111 Date: 04 June 2019 Tanya McColgan Bellevue Gold Limited Suite 3, Level 3, 24 Outram Street WEST PERTH WA 6008 Dear Tanya, Flora and vegetation values identified within PoW 79431 In response to your request for the preliminary results of the detailed flora and vegetation assessment undertaken over the Bellevue Gold Project area, RPS Australia West Pty Ltd (RPS) herein provides a summary of the key results and outcomes of the assessment in lieu of the final report which is due in July. Background Bellevue Gold Ltd (Bellevue Gold) is currently undertaking an exploration drilling program within mining tenement M3625 for the Bellevue Gold Project (the Project). The Project is located in the north-eastern Goldfields; approximately 40 km north of the township of Leinster in the Shire of Leonora. The Project is situated on and surrounded by pastoral lands and is located on Yakabindie cattle station. RPS was commissioned by Bellevue Gold to undertake a detailed flora and vegetation assessment over M3625 and part of M3624 to encompass the area where exploration drilling is currently underway and including the potential mining and associated infrastructure footprint (the proposed development area). The survey area, the proposed development area and the PoW 79431 area are shown in Figure A. RPS understands that the Department of Mines, Industry Regulation and Safety (DMIRS) and the Department of Biodiversity Conservation and Attractions (DBCA) have requested additional information regarding the natural values of the PoW area, where in-fill drilling is proposed, in order to adequately assess the PoW application. -
Mapping the Future 2020
Mapping theSustainability Future Report 2020 Sustainability Report Sustainability Report Contents About This Report Front Cover: Marble Gum tree native to the Yamarna region About This Report 1 From the Risk and ESG Committee Chair and the Managing Director 2 2020 Snapshot 4 About Us 6 Our People 16 Our Community 28 Our Environment 36 Our Climate 46 Economic Performance and Governance 50 This is Gold Road’s first Looking Forward 57 Sustainability Report covering GRI, SASB and TCFD Content Index Tables 58 the calendar year 2020 Nature of this document: The purpose of this document is to provide general The projections, estimates and beliefs contained in such forward-looking information about Gold Road Resources Limited (the ‘Company’). Unless statements necessarily involve known and unknown risks and uncertainties, and otherwise stated herein, the information in this document is based on the are necessarily based on assumptions, which may cause the Company’s actual Company’s own information and estimates. In viewing this document you agree performance, results and achievements in future periods to differ materially Our intention is to report annually from hereon. The report applies the Global Reporting Initiative to be bound by the following terms and conditions. This document has been from any express or implied estimates or projections. Accordingly, readers are Gold Road, listed on the Australian Securities Standards (GRI) for Core reporting, references the Task prepared by the Company. Information in this document should be read in cautioned not to place undue reliance on forward-looking statements. Relevant conjunction with other announcements made by the Company to the Australian factors which may affect the Company’s actual performance, results and Exchange (ASX:GOR), is headquartered in Perth, Force on Climate-related Financial Disclosures (TCFD) Securities Exchange and available at goldroad.com.au or www.asx.com. -
Enabling the Market: Incentives for Biodiversity in the Rangelands
Enabling the Market: Incentives for Biodiversity in the Rangelands: Report to the Australian Government Department of the Environment and Water Resources by the Desert Knowledge Cooperative Research Centre Anita Smyth Anthea Coggan Famiza Yunus Russell Gorddard Stuart Whitten Jocelyn Davies Nic Gambold Jo Maloney Rodney Edwards Rob Brandle Mike Fleming John Read June 2007 Copyright and Disclaimers © Commonwealth of Australia 2007 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgment of the source. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Water Resources. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Australian Government does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Contributing author information Anita Smyth: CSIRO Sustainable Ecosystems Anthea Coggan: CSIRO Sustainable Ecosystems Famiza Yunus: CSIRO Sustainable Ecosystems Russell Gorddard: CSIRO Sustainable Ecosystems Stuart Whitten: CSIRO Sustainable Ecosystems Jocelyn Davies: CSIRO Sustainable Ecosystems Nic Gambold: Central Land Council Jo Maloney Rodney Edwards: Ngaanyatjarra Council Rob Brandle: South Austalia Department for Environment and Heritage Mike Fleming: South Australia Department of Water, Land and Biodiversity Conservation John Read: BHP Billiton Desert Knowledge CRC Report Number 18 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgement of the source. -
Volume 5 Pt 3
Conservation Science W. Aust. 7 (1) : 153–178 (2008) Flora and Vegetation of the banded iron formations of the Yilgarn Craton: the Weld Range ADRIENNE S MARKEY AND STEVEN J DILLON Science Division, Department of Environment and Conservation, Wildlife Research Centre, PO Box 51, Wanneroo WA 6946. Email: [email protected] ABSTRACT A survey of the flora and floristic communities of the Weld Range, in the Murchison region of Western Australia, was undertaken using classification and ordination analysis of quadrat data. A total of 239 taxa (species, subspecies and varieties) and five hybrids of vascular plants were collected and identified from within the survey area. Of these, 229 taxa were native and 10 species were introduced. Eight priority species were located in this survey, six of these being new records for the Weld Range. Although no species endemic to the Weld Range were located in this survey, new populations of three priority listed taxa were identified which represent significant range extensions for these taxa of conservation significance. Eight floristic community types (six types, two of these subdivided into two subtypes each) were identified and described for the Weld Range, with the primary division in the classification separating a dolerite-associated floristic community from those on banded iron formation. Floristic communities occurring on BIF were found to be associated with topographic relief, underlying geology and soil chemistry. There did not appear to be any restricted communities within the landform, but some communities may be geographically restricted to the Weld Range. Because these communities on the Weld Range are so closely associated with topography and substrate, they are vulnerable to impact from mineral exploration and open cast mining. -
Nuytsia the Journal of the Western Australian Herbarium 24: 103–108 Published Online 3 July 2014
S.J. Dillon, Grevillea saxicola (Proteaceae), a new species from the Pilbara 103 Nuytsia The journal of the Western Australian Herbarium 24: 103–108 Published online 3 July 2014 Grevillea saxicola (Proteaceae), a new species from the Pilbara of Western Australia Steven J. Dillon Western Australian Herbarium, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Email: [email protected] Abstract Dillon, S.J. Grevillea saxicola (Proteaceae), a new species from the Pilbara of Western Australia. Nuytsia 24: 103–108 (2014). A new species of Grevillea R.Br. ex Knight, G. saxicola S.J.Dillon, is described. An amendment to an existing key of Grevillea is provided to include the new taxon, which has conservation priority. Introduction Grevillea R.Br. ex Knight is the third largest genus in Western Australia with 348 taxa, 14 of which occur in the Pilbara region of Western Australia. The last revision of the genus was by Makinson (2000) and since that time a further c. 20 taxa have been added to the census of Western Australian plants (Western Australian Herbarium 1998–). Close examination of several Grevillea collections from the southern Pilbara revealed a distinct new taxon that had been previously ascribed to either G. nematophylla F.Muell. or G. berryana Ewart & Jean White. This finding was supported by more recent collections and this new species is described here as G. saxicola S.J.Dillon. Methods Descriptions and measurements are based on dried herbarium specimens held at the Western Australian Herbarium. When possible, up to five flowers were re-hydrated from each specimen for floral examination. -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
Austin Land System Unit Landform Soil Vegetation Area (%) 1
Pages 186-237 2/12/08 11:26 AM Page 195 Austin land system Unit Landform Soil Vegetation area (%) 1. 5% Low ridges and rises – low ridges of Shallow red earths and Scattered (10-20% PFC) shrublands outcropping granite, quartz or greenstone shallow duplex soils on or woodlands usually dominated by and low rises, up to 800 m long and granite or greenstone Acacia aneura (mulga) (SIMS). 2-25 m high, and short footslopes with (4b, 5c, 7a, 7b). abundant mantles of cobbles and pebbles. 2. 80% Saline stony plains – gently undulating Shallow duplex soils on Very scattered to scattered (2.5- plains extending up to 3 km, commonly greenstone (7b). 20% PFC) Maireana spp. low with mantles of abundant to very abundant shrublands (SBMS), Maireana quartz or ironstone pebbles. species include M. pyramidata (sago bush), M. glomerifolia (ball- leaf bluebush), M. georgei (George’s bluebush) and M. triptera (three- winged bluebush). 3. 10% Stony plains – gently undulating plains Shallow red earths on Very scattered to scattered (2.5- within or above unit 2; quartz and granite granite (5c). 20% PFC) low shrublands (SGRS). pebble mantles and occasional granite outcrop. 4. <1% Drainage foci – small discrete Red clays of variable depth Moderately close to close (20-50% (10-50 m in diameter) depositional zones, on hardpan or parent rock PFC) acacia woodland or tall occurring sparsely within units 2 and 5. (9a, 9b). shrubland; dominant species are A. aneura and A. tetragonophylla (curara) (GRMU). 5. 5% Drainage lines – very gently inclined Deep red earths (6a). Very scattered (2.5-10% PFC) A linear drainage tracts, mostly unchannelled aneura low woodland or tall but occasionally incised with rills, gutters shrubland (HPMS) or scattered and shallow gullies; variable mantles of Maireana spp. -
MVG 16 Acacia Shrublands DRAFT
MVG 16 - ACACIA SHRUBLANDS Acacia hillii, Tanami Desert, NT (Photo: D. Keith) Overview The overstorey of MVG 16 is dominated by multi-stemmed acacia shrubs. The most widespread species is Acacia aneura (mulga). Mulga vegetation takes on a variety of structural expressions and is consequently classified partly within MVG 16 where the overstorey is dominated by multi-stemmed shrubs, partly within MVG 6 in accordance with the Kyoto Protocol definition of forest cover in Australia (trees > 2 m tall and crown cover > 20%, foliage projective cover > 10%); and partly within MVG 13 where the woody dominants are predominantly single-stemmed, but with crown cover less than 20%. Occurs where annual rainfall is below 250mm in southern Australia and below 350mm in northern Australia (Hodgkinson 2002; Foulkes et al. 2014). Species composition varies along rainfall gradients, with substrate and rainfall seasonality (Beadle 1981; Johnson and Burrows 1994). Transitions into MVG 13 Acacia woodlands with higher rainfall and varying soil types. Is most commonly found on red earth soils (Hodgkinson 2002). Facts and figures Major Vegetation Group MVG 16 - Acacia Shrublands Major Vegetation Subgroups 20. Stony mulga woodlands and shrublands NSW, (number of NVIS descriptions) NT, QLD, SA, WA 23. Sandplain Acacia woodlands and shrublands NSW, NT, QLD, SA, WA Typical NVIS structural formations Shrubland (tall, mid,) Open shrubland (tall, mid,) Sparse shrubland (tall, mid,) Number of IBRA regions 53 Most extensive in IBRA region Est. pre-1750 and present : Great Victoria Desert (WA and SA) Estimated pre-1750 extent (km2) 865 845 Present extent (km2) 851 274 Area protected (km2) 85 444 Acacia ligulata (sandhill wattle), SA (Photo: M. -
Legumes of Wallace Desert Gardens
Bulletin of The Desert Legume Program of The Boyce Thompson Southwestern Arboretum and The University of Arizona Volume 18, Number 2 August 2006 Legumes of Wallace Desert Gardens Pamela Slate standing relationship between our Desert Gardens reviews and Botanic Coordinator organizations, one I see growing ever approves appropriate on-site Wallace Desert Gardens stronger year after year.” projects of mutual benefit. Wallace Desert Gardens is a Matthew B. Johnson non-profit foundation [(502(c)(3) In the mid-1980’s, the Program Manager and Curator under IRS rules] that was created in Wallace’s moved, complete with their Desert Legume Program 1993, well after much of the garden plant collection, from a Paradise was established. Its mission was Valley acre to a Scottsdale The virtues of desert legumes written by HB, as he was fondly subdivision where they purchased captured the attention of H.B. and known, to reflect the original intent of numerous acre-plus lots. At the time, Jocelyn M. Wallace when they first the foundation: HB had “no idea it would be bigger learned of the Desert Legume than a two-acre garden.” Although Program (DELEP) in 1989, about a Wallace Desert Gardens is a he “knew nothing of desert plants year after the program was founded collection of the world’s deserts when he moved to Arizona” in the at the University of Arizona. They plants located at an elevation of early 1980’s, they quickly became his understood the importance of some 2400 feet. Founded by passion. Today the garden legumes’ potential applications H.B. -
080057-10.003.Pdf
',prT€.rtsnv Jo E]olC,,eql ur uorlEcrlqndrreql go ecue,,rpeur sed,{lolca1 Jo uoqcelaspJocel ot pup seu€u alcprlel ot s.rededgo selrJsJno sJnurtuocuorlnqutuoc srql uollJnpoJlul .,{le{EIg , .V ?9 uepretr4{octdstltssas y puc qlueg DJDJtdslqau ,uepr€tr4trttuosln[ .y '.qtueg sapotpaqda .V 'uapret\ s!sualptD8looJ y :sgureuSurtrolloJ eq] JoJpepJoJe.r ere suorlucr;rdflolcel.uortrppB uI urlsr?tr^trg .y ,(,(trurJlu ue1,.oJDluJo dsqnsstsuaw4otqtoi{ puE u,rou{un.}o) ullsEINry up,roJ 'urlsvl .Je^ .y,(.qluegelecrdsnlnu DdrDJo\iuox y { 4) ue,roC otzJpullKc DIlKqdoatals .V o} peteler) -V .y,ur1svt14 urlsEtAluB,^ oC rinBuls V'(qlueg saplotpaqda ot peteler)urTSeI ? up,roJ rpuodat .urlsul .dsqns -V,(.wqen1 uet oJ Dllolqn|od dsq\s oll{tldourJuo y l T ue,$oJ ow7n0 o Kqdotnau lluosuaqqlnTv ot petrler) .V,(8zt\J urts€I J? ue|/\oJ DJo^al l oUKqdorflra yol potBler)urts?r{ ? uet^oJ DJsaBuoJu|V'(uep\el/i. .y .^ou .tr.JS .qwor .urIseIN lluosLnl uo p3sBq) la T uE,roC (uoprEtr^l) ,urlsetrAtr tluostnI Je^pue urlsuINe uel o) otllold rp^ ? uE,ro710p1ad tero.tnauotalatl.y,(Ap>1u1g ry uoprBl\Ilrajsqa$ y ot pot€leJ,{lsnonuel) ullsel^I T u€,roJnsoqqlS V,(qluegDr auotalaq-V o! patElo])urtsutr ue^oJDlDlrnunpada .y,ullsEj,{ .y,(Tlentr .C l ? ? uB,{\oJsadtpxu.dsqns wxto|tasap l .V,(qlvegru oaut8towuponb yot pet€leJ)urTsrt{ 2ttuE^\oJ Dsslwap auopJaq yo} petele:)urtsB1,a{ uB,{|oJ 'urtsutr .dsqns 'ultsEl T) D)lrpuut) y J 4) ue,roJ sr,raau11 fluosuaqqfiJ.y I ry ule/{io}J7UDI 'dsqns .V,(u\selNDuolsawrf.y pur ur1sey41ryuu,tro3 rsr;ia dsqnsstsuarp.utSlooc ot petelel) urls€tr{ uB^\oJDiDlltlwD -
Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia
fire Article Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia Megan Ladbrook, Eddie J. B. van Etten * and William D. Stock Centre for Ecosystem Management, Edith Cowan University, Joondalup 6027, Perth, Australia; [email protected] (M.L.); [email protected] (W.D.S.) * Correspondence: [email protected]; Tel.: +61-8-6304-5566 Received: 8 November 2018; Accepted: 11 December 2018; Published: 14 December 2018 Abstract: This study investigates the fire regime for the arid Carnarvon Basin region of Western Australia using remotely sensed imagery. A fire history database was constructed from satellite images to characterise the general fire regime and determine any effect of vegetation types and pre-fire weather and climate. The study area was divided into two sections (northern and southern) due to their inherently different vegetation and climate. A total of 23.8% (15,646 km2) of the study area was burnt during the 39-year study period. Heathland vegetation (54%) burnt the most extensively in the southern study area, and hummock grasslands (68%) in the northern. A single, unusually large fire in 2012 followed exceptional rains in the previous 12 months and accounted for 55% of the total burnt area. This fire burnt mainly through Acacia shrublands and woodlands rather than hummock grasslands, as normally experienced in the northern study area. Antecedent rainfall and fire weather were found to be the main meteorological factors driving fire size. Both study areas showed a moderate to strong correlation between fire size and increased pre-fire rainfall in the year preceding the fire.