Unlocking the Complexities of Tumor-Associated Regulatory T Cells Jaime L

Total Page:16

File Type:pdf, Size:1020Kb

Unlocking the Complexities of Tumor-Associated Regulatory T Cells Jaime L Unlocking the Complexities of Tumor-Associated Regulatory T Cells Jaime L. Chao and Peter A. Savage This information is current as J Immunol 2018; 200:415-421; ; of September 25, 2021. doi: 10.4049/jimmunol.1701188 http://www.jimmunol.org/content/200/2/415 Downloaded from References This article cites 48 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/200/2/415.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology Unlocking the Complexities of Tumor-Associated Regulatory T Cells Jaime L. Chao and Peter A. Savage Regulatory T (Treg) cells are found at elevated densities prognostic significance (2, 3), suggesting that Treg cells may in many human cancers and are thought to be a major have a functional impact on tumor development and pro- barrier to the generation of robust antitumor T cell re- gression. Interestingly, in some cancers such as hepatocellular sponses. In this review, we discuss recent advances in the carcinoma, a high Treg cell density is predictive of poor understanding of tumor-associated Treg cell diversity clinical outcome, consistent with the paradigm that Treg cells and function. Emerging evidence indicates that the promote tumor progression by suppressing tumor-specific transcriptional program of Treg cells infiltrating human T cell responses. In contrast, a high Treg cell density is pre- cancers may represent a composite program blending a dictive of improved clinical outcome in other cancers such as Downloaded from tissue-associated expression signature with an addi- colorectal carcinoma. Although the precise mechanisms driving tional tumor-specific signature common to Treg cells this association are undefined, it has been proposed that the from multiple cancer types. Studies in mouse models favorable effect of Treg cells in colorectal carcinoma may reflect a role for Treg cells in suppressing tumor-promoting inflam- have defined unique molecular pathways required for mation in response to gut microbes (4). These disparate find- Treg cell function in the tumor context that can be ma- ings suggest that the role of Treg cells in shaping tumorigenesis http://www.jimmunol.org/ nipulated to selectively dampen intratumoral Treg cell may be highly context-dependent, varying considerably at activity. Finally, an expanding body of work has different organ sites. revealed diverse functions for Treg cells in nonlymphoid Given the pivotal role of Treg cells in immune suppression tissues that are unrelated to immune suppression, sug- and the prevalence of these cells in many human cancers, it is gesting a need to explore functions of intratumoral Treg thought that Treg cells constitute a major barrier to therapeutic cells beyond the regulation of antitumor immunity. efforts to mobilize the immune system to induce tumor re- The Journal of Immunology, 2018, 200: 415–421. gression. This idea has spurred concerted efforts to develop modalities to enhance cancer immunotherapies by inducing by guest on September 25, 2021 he development and progression of cancer can be the selective depletion or modulation of intratumoral Treg cells profoundly impacted by tumor cell–extrinsic factors while simultaneously leaving Treg cells elsewhere in the body T such as cells of the immune system, which are unaffected. In this review, we highlight recent studies that thought to either promote or restrict tumor progression in advance our understanding of tumor-associated Treg cell bi- different contexts (1). Many human tumors contain immune ology and reveal potential paths for the selective manipulation cells localized diffusely or clustered within distinct regions, of these cells. First, we discuss evidence suggesting that ther- indicative of ongoing inflammatory reactions or antitumor apeutic Abs specific for T cell–expressed receptors such as immune responses. Regulatory T (Treg) cells expressing the CTLA-4 may function in part by inducing the specific de- transcription factor Foxp3 are common protagonists in these pletion of intratumoral Treg cells. We then review recent reactions, and they are often found at elevated densities in surveys of Treg cells isolated from human tumors, which tumor lesions relative to lymphoid and nonlymphoid sites. suggest that intratumoral Treg cells are broadly imprinted by Treg cells throughout the body are essential for the prevention the tissue microenvironment, but they also express a con- of autoimmunity and the maintenance of immune homeo- served tumor-specific signature that may be common to stasis, and they function by suppressing the activation and intratumoral Treg cells from multiple cancer types. Next, we differentiation of CD4+ Th cells and CD8+ cytotoxic T cells discuss work indicating that intratumoral Treg cells require reactive to autologous, environmental, or tumor-expressed unique molecular programs to function and thrive within Ags. Numerous correlative studies have revealed that for tumor lesions, and that these programs can be selectively some cancers, the density of tumor-infiltrating Treg cells has perturbed to modulate intratumoral Treg cell activity in Department of Pathology, University of Chicago, Chicago, IL 60637 Abbreviations used in this article: ADCC, Ab-dependent cellular cytotoxicity; Areg, amphiregulin; CRC, colorectal carcinoma; cTreg, central Treg; eTreg, effector Treg; ORCID: 0000-0003-1872-734X (J.L.C.). HFSC, hair follicle stem cell; Nrp1, neuropilin-1; NSCLC, non–small cell lung cancer; Received for publication August 17, 2017. Accepted for publication October 2, 2017. Sema4a, semaphorin-4a; SLO, secondary lymphoid organ; Treg, regulatory T; VAT, visceral adipose tissue; VEGF, vascular endothelial growth factor. This work was supported by National Institutes of Health Grants R01-AI126756 (to P.A.S.) and R01-AI110507 (to P.A.S.). J.L.C. was supported by National Institutes of Health Ó Training Grant T32 AI007090. Copyright 2018 by The American Association of Immunologists, Inc. 0022-1767/18/$35.00 Address correspondence and reprint requests to Dr. Peter A. Savage, Department of Pathology, University of Chicago, 900 E. 57th Street, KCBD 6134, Chicago, IL 60637. E-mail address: [email protected] www.jimmunol.org/cgi/doi/10.4049/jimmunol.1701188 416 BRIEF REVIEWS: TUMOR-ASSOCIATED REGULATORY T CELLS preclinical animal models. Finally, we discuss mounting evi- Despite clear mechanistic evidence in mice that Abs can dence that Treg cells resident in nonlymphoid organs can promote tumor rejection by inducing intratumoral Treg cell function to regulate diverse processes such as tissue homeo- depletion, the relevance of these concepts to the efficacy of Ab- stasis, repair, and metabolism, and we speculate about the based immunotherapies in human cancer patients remains potential implications of these findings on our understanding undefined. The clearest available evidence in support of this of tumor-associated Treg cells. We conclude by highlighting idea comes from the studies of Romano et al. (14), which critical gaps in knowledge in the field and outlining future compared samples from human melanoma patients who did inquiries needed to gain a more complete understanding of or did not respond to therapy using the anti–CTLA-4 Ab intratumoral Treg cells at different organ sites. ipilimumab. In ex vivo assays, it was found that nonclassical monocytes expressing the activating Fc receptor CD16 can Do “checkpoint blockade” Abs function by depleting intratumoral engage ipilimumab and induce ADCC-mediated lysis of Treg Treg cells? cells in vitro. Importantly, clinical responses to ipilimumab In the past decade, Abs specific for the T cell coinhibitory were associated with Treg cell depletion in tumor lesions, as receptors CTLA-4 and PD-1 have shown striking success in well as elevated densities of nonclassical monocytes in the inducing durable clinical benefit in a fraction of cancer patients peripheral blood at baseline compared with nonresponders spanning a variety of cancer types (5). Early in their devel- (14), suggestive of ADCC-dependent intratumoral Treg cell opment, these Abs were dubbed “checkpoint blockade” Abs ablation. Taken together, the studies above support the idea based on the idea that they were thought to function by that Abs specific for T cell–expressed receptors may function in Downloaded from blocking the binding of CTLA-4 or PD-1 to their ligands, part by inducing the selective elimination of tumor-infiltrating thereby releasing tumor-specific T cells from checkpoints, Treg cells in circumstances in which the Ab isotype can avidly limiting their activation and effector function (6). However, engage activating Fc receptors, and Fc receptor–expressing
Recommended publications
  • CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L
    CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L. McCully, Kristin Ladell, Robert Andrews, Rhiannon E. Jones, Kelly L. Miners, Laureline Roger, This information is current as Duncan M. Baird, Mark J. Cameron, Zita M. Jessop, Iain S. of September 24, 2021. Whitaker, Eleri L. Davies, David A. Price and Bernhard Moser J Immunol published online 2 February 2018 http://www.jimmunol.org/content/early/2018/02/02/jimmun Downloaded from ol.1701377 Supplementary http://www.jimmunol.org/content/suppl/2018/02/02/jimmunol.170137 Material 7.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 2, 2018, doi:10.4049/jimmunol.1701377 The Journal of Immunology CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L.
    [Show full text]
  • G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
    npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations.
    [Show full text]
  • Structural Basis of the Activation of the CC Chemokine Receptor 5 by a Chemokine Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401117; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist One-sentence summary: The structure of CCR5 in complex with the chemokine agonist [6P4]CCL5 and the heterotrimeric Gi protein reveals its activation mechanism Authors: Polina Isaikina1, Ching-Ju Tsai2, Nikolaus Dietz1, Filip Pamula2,3, Anne Grahl1, Kenneth N. Goldie4, Ramon Guixà-González2, Gebhard F.X. Schertler2,3,*, Oliver Hartley5,*, 4 1,* 2,* 1,* Henning Stahlberg , Timm Maier , Xavier Deupi , and Stephan Grzesiek Affiliations: 1 Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland 2 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 3 Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland 4 Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland 5 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva *Address correspondence to: Stephan Grzesiek Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, CH-4056 Basel, Switzerland Phone: ++41 61 267 2100 FAX: ++41 61 267 2109 Email: [email protected] Xavier Deupi Email: [email protected] Timm Maier Email: [email protected] Oliver Hartley Email: [email protected] Gebhard F.X. Schertler Email: [email protected] Keywords: G protein coupled receptor (GPCR); CCR5; chemokines; CCL5/RANTES; CCR5- gp120 interaction; maraviroc; HIV entry; AIDS; membrane protein structure; cryo-EM; GPCR activation.
    [Show full text]
  • Th2 Effector Lymphocytes Regulatory and + Cells Enriched for FOXP3
    CCR8 Expression Identifies CD4 Memory T Cells Enriched for FOXP3 + Regulatory and Th2 Effector Lymphocytes This information is current as Dulce Soler, Tobias R. Chapman, Louis R. Poisson, Lin of September 27, 2021. Wang, Javier Cote-Sierra, Mark Ryan, Alice McDonald, Sunita Badola, Eric Fedyk, Anthony J. Coyle, Martin R. Hodge and Roland Kolbeck J Immunol 2006; 177:6940-6951; ; doi: 10.4049/jimmunol.177.10.6940 Downloaded from http://www.jimmunol.org/content/177/10/6940 References This article cites 68 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/177/10/6940.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCR8 Expression Identifies CD4 Memory T Cells Enriched for FOXP3؉ Regulatory and Th2 Effector Lymphocytes Dulce Soler,1 Tobias R.
    [Show full text]
  • Use of Alternate Coreceptors on Primary Cells by Two HIV-1 Isolates
    Edinburgh Research Explorer Use of alternate coreceptors on primary cells by two HIV-1 isolates Citation for published version: Cilliers, T, Willey, S, Sullivan, WM, Patience, T, Pugach, P, Coetzer, M, Papathanasopoulos, M, Moore, JP, Trkola, A, Clapham, P & Morris, L 2005, 'Use of alternate coreceptors on primary cells by two HIV-1 isolates', Virology, vol. 339, no. 1, pp. 136-44. https://doi.org/10.1016/j.virol.2005.05.027 Digital Object Identifier (DOI): 10.1016/j.virol.2005.05.027 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Virology Publisher Rights Statement: Copyright 2005 Elsevier Inc. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 Virology 339 (2005) 136 – 144 www.elsevier.com/locate/yviro Use of alternate coreceptors on primary cells by two HIV-1 isolates Tonie Cilliersa, Samantha Willeyb, W. Mathew Sullivanb, Trudy Patiencea, Pavel Pugachc, Mia Coetzera, Maria Papathanasopoulosa,1, John P.
    [Show full text]
  • Yabe R Et Al, 2014.Pdf
    International Immunology, Vol. 27, No. 4, pp. 169–181 © The Japanese Society for Immunology. 2014. All rights reserved. doi:10.1093/intimm/dxu098 For permissions, please e-mail: [email protected] Advance Access publication 25 October 2014 CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes Rikio Yabe1,2,3,*, Kenji Shimizu1,2,*, Soichiro Shimizu2, Satoe Azechi2, Byung-Il Choi2, Katsuko Sudo2, Sachiko Kubo1,2, Susumu Nakae2, Harumichi Ishigame2, Shigeru Kakuta4 and Yoichiro Iwakura1,2,3,5 1Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan 2Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, University of Tokyo (IMSUT), Minato-ku, Tokyo 108-8639, Japan 3Medical Mycology Research Center, Chiba University, Inohana Chuo-ku, Chiba 260-8673, Japan RTICLE 4 A Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, FEATURED Tokyo 113-8657, Japan 5Core Research for Evolutional and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan Correspondence to: Y. Iwakura; E-mail: [email protected] *These authors equally contributed to this work. Received 2 September 2014, accepted 17 October 2014 Abstract Allergic contact dermatitis (ACD) is a typical occupational disease in industrialized countries. Although various cytokines and chemokines are suggested to be involved in the pathogenesis of ACD, the roles of these molecules remain to be elucidated. CC chemokine receptor 8 (CCR8) is one such molecule, of which expression is up-regulated in inflammatory sites of ACD patients.
    [Show full text]
  • Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them?
    cancers Review Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them? Justine Cinier 1,†, Margaux Hubert 1,†, Laurie Besson 1, Anthony Di Roio 1 ,Céline Rodriguez 1, Vincent Lombardi 2, Christophe Caux 1,‡ and Christine Ménétrier-Caux 1,*,‡ 1 University of Lyon, Claude Bernard Lyon 1 University, INSERM U-1052, CNRS 5286 Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; [email protected] (J.C.); [email protected] (M.H.); [email protected] (L.B.); [email protected] (A.D.R.); [email protected] (C.R.); [email protected] (C.C.) 2 Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France; [email protected] * Correspondence: [email protected] † Co-first authorship. ‡ Co-last authorship. Simple Summary: The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted Citation: Cinier, J.; Hubert, M.; depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Besson, L.; Di Roio, A.; Rodriguez, C.; Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic Lombardi, V.; Caux, C.; strategies developed to block these mechanisms.
    [Show full text]
  • Anti-Γδ TCR Antibody-Expanded Γδ T Cells
    Cellular & Molecular Immunology (2012) 9, 34–44 ß 2012 CSI and USTC. All rights reserved 1672-7681/12 $32.00 www.nature.com/cmi RESEARCH ARTICLE Anti-cd TCR antibody-expanded cd T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies Jianhua Zhou, Ning Kang, Lianxian Cui, Denian Ba and Wei He Cell-based immunotherapy for lymphoid malignancies has gained increasing attention as patients develop resistance to conventional treatments. cd T cells, which have major histocompatibility complex (MHC)-unrestricted lytic activity, have become a promising candidate population for adoptive cell transfer therapy. We previously established a stable condition for expanding cd T cells by using anti-cd T-cell receptor (TCR) antibody. In this study, we found that adoptive transfer of the expanded cd T cells to Daudi lymphoma-bearing nude mice significantly prolonged the survival time of the mice and improved their living status. We further investigated the characteristics of these antibody-expanded cd T cells compared to the more commonly used phosphoantigen-expanded cd T cells and evaluated the feasibility of employing them in the treatment of lymphoid malignancies. Slow but sustained proliferation of human peripheral blood cd T cells was observed upon stimulation with anti-cd TCR antibody. Compared to phosphoantigen-stimulated cd T cells, the antibody-expanded cells manifested similar functional phenotypes and cytotoxic activity towards lymphoma cell lines. It is noteworthy that the anti-cd TCR antibody could expand both the Vd1 and Vd2 subsets of cd T cells. The in vitro-expanded Vd1 T cells displayed comparable tumour cell-killing activity to Vd2 T cells.
    [Show full text]
  • Antagonism of Chemokine Receptor CCR8 Is Ineffective in a Primate
    Asthma Thorax: first published as 10.1136/thoraxjnl-2012-203012 on 1 March 2013. Downloaded from ORIGINAL ARTICLE Antagonism of chemokine receptor CCR8 is ineffective in a primate model of asthma Lin Wang,1,2 Tracy J Jenkins,1,3 Mingshi Dai,1,4 Wei Yin,1,5 Jacqueline C Pulido,1,6 Elise LaMantia-Martin,7 Martin R Hodge,1,8 Timothy Ocain,1,9 Roland Kolbeck1,10 ▸ Additional material is ABSTRACT published online only. To view Background Expression of the T-cell-associated Key messages please visit the journal online (http://dx.doi.org/10.1136/ chemokine receptor CCR8 and its ligand CCL1 have been demonstrated to be elevated in patients with thoraxjnl-2012-203012). What is the key question? asthma. CCR8 deficiency or inhibition in models of For numbered affiliations see ▸ Does CCR8 inhibition efficiently ameliorate allergic airway disease in mice resulted in conflicting end of article inflammation and airway function in a primate data. model of asthma? Correspondence to Objective To investigate the effects of a selective small What is the bottom line? Dr Roland Kolbeck, Department molecule CCR8 inhibitor (ML604086) in a primate model fl ▸ Inhibition of CCR8 with a small molecule of Respiratory, In ammation of asthma. and Autoimmunity, antagonist did not result in improvements of Methods ML604086 and vehicle were administered by MedImmune, LLC, One lung inflammation and lung function, although MedImmune Way, intravenous infusion to 12 cynomolgus monkeys during complete inhibition of CCR8 on peripheral Gaithersburg, MD 20878, USA; airway challenge with Ascaris suum. Samples were blood T-cells was achieved. [email protected] collected throughout the study to measure Why read on? pharmacokinetics (PK) and systemic CCR8 inhibition, as Received 17 November 2012 ▸ This study describes a dispensable role of well as inflammation, T helper 2 (Th2) cytokines and Revised 29 January 2013 chemokine receptor CCR8 in allergic airway Accepted 1 February 2013 mucus in bronchoalveolar lavage (BAL).
    [Show full text]
  • The Receptor for TCA-3 Molecular Characterization of Murine CCR8 As
    Identification of CCR8 as the Specific Receptor for the Human β-Chemokine I-309: Cloning and Molecular Characterization of Murine CCR8 as the Receptor for TCA-3 This information is current as of September 23, 2021. Iñigo Goya, Julio Gutiérrez, Rosa Varona, Leonor Kremer, Angel Zaballos and Gabriel Márquez J Immunol 1998; 160:1975-1981; ; http://www.jimmunol.org/content/160/4/1975 Downloaded from References This article cites 51 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/160/4/1975.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Identification of CCR8 as the Specific Receptor for the Human b-Chemokine I-309: Cloning and Molecular Characterization of Murine CCR8 as the Receptor for TCA-31 In˜igo Goya, Julio Gutie´rrez, Rosa Varona, Leonor Kremer, Angel Zaballos, and Gabriel Ma´rquez2 Chemokine receptor-like 1 (CKR-L1) was described recently as a putative seven-transmembrane human receptor with many of the structural features of chemokine receptors.
    [Show full text]
  • CXCR6 Regulates Localization of Tissue-Resident Memory CD8 T Cells to the Airways
    Published Online: 26 September, 2019 | Supp Info: http://doi.org/10.1084/jem.20181308 Downloaded from jem.rupress.org on September 26, 2019 ARTICLE CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways Alexander N. Wein1*, Sean R. McMaster1*, Shiki Takamura2*, Paul R. Dunbar1, Emily K. Cartwright1, Sarah L. Hayward1, Daniel T. McManus1, Takeshi Shimaoka3, Satoshi Ueha3, Tatsuya Tsukui4, Tomoko Masumoto2, Makoto Kurachi5, Kouji Matsushima3, and Jacob E. Kohlmeier1,6 Resident memory T cells (TRM cells) are an important first-line defense against respiratory pathogens, but the unique contributions of lung TRM cell populations to protective immunity and the factors that govern their localization to different compartments of the lung are not well understood. Here, we show that airway and interstitial TRM cells have distinct effector functions and that CXCR6 controls the partitioning of TRM cells within the lung by recruiting CD8 TRM cells to the −/− airways. The absence of CXCR6 significantly decreases airway CD8 TRM cells due to altered trafficking of CXCR6 cells within the lung, and not decreased survival in the airways. CXCL16, the ligand for CXCR6, is localized primarily at the respiratory epithelium, and mice lacking CXCL16 also had decreased CD8 TRM cells in the airways. Finally, blocking CXCL16 inhibited the steady-state maintenance of airway TRM cells. Thus, the CXCR6/CXCL16 signaling axis controls the localization of TRM cells to different compartments of the lung and maintains airway TRM cells. Introduction Over the past decade, resident memory T cells (TRM cells) have (Campbell et al., 1999; Schaerli et al., 2004; Sigmundsdottir been recognized as a distinct population from either central or et al., 2007).
    [Show full text]
  • Evidence for Involvement of CCR8 by Pathogenic CD4 T Cells in Type 1
    Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL1 This information is current as of September 25, 2021. Joseph Cantor and Kathryn Haskins J Immunol 2007; 179:5760-5767; ; doi: 10.4049/jimmunol.179.9.5760 http://www.jimmunol.org/content/179/9/5760 Downloaded from References This article cites 36 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/9/5760.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL11 Joseph Cantor and Kathryn Haskins2 Adoptive transfer of diabetogenic CD4 Th1 T cell clones into young NOD or NOD.scid recipients rapidly induces onset of diabetes and also provides a system for analysis of the pancreatic infiltrate.
    [Show full text]