Targeting CCR8 Induces Protective Antitumor Immunity and Enhances Vaccine-Induced Responses in Colon Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Targeting CCR8 Induces Protective Antitumor Immunity and Enhances Vaccine-Induced Responses in Colon Cancer Author Manuscript Published OnlineFirst on July 19, 2018; DOI: 10.1158/0008-5472.CAN-18-1119 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer Daniel O Villarreal1, Andrew L’Huillier1, Susan Armington1, Cristina Mottershead1, Elena V Filippova1, Brandon D Coder1, Robert G. Petit1, Michael F Princiotta1 1Advaxis Immunotherapies, Princeton, NJ, 08540, USA To whom correspondence should be addressed: Daniel O Villarreal, email: [email protected] Running Title: CCR8 is a novel target for cancer immunotherapy Key words: CCR8, Vaccines, Cancer Immunotherapy, CD8 T cells, Tregs Total figures: 5 Word Count: 5,000 Disclosure: No potential conflicts of interest were disclosed by the other authors. 1 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 19, 2018; DOI: 10.1158/0008-5472.CAN-18-1119 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract CCR8 is a chemokine receptor expressed principally on regulatory T cells (Tregs) and is known to be critical for CCR8+ Treg-mediated immunosuppression. Recent studies have demonstrated that CCR8 is uniquely upregulated in human tumor-resident Tregs of breast, colon, and lung cancer patients when compared to normal tissue-resident Tregs. Therefore, CCR8+ tumor-resident Tregs are rational targets for cancer immunotherapy. Here we demonstrate that monoclonal antibody (mAb) therapy targeting CCR8 significantly suppresses tumor growth and improves long-term survival in colorectal tumor mouse models. This antitumor activity correlated with increased tumor-specific T cells, enhanced infiltration of CD4+ and CD8+ T cells, and a significant decrease in the frequency of tumor-resident CD4+CCR8+ Tregs. Tumor-specific CD8+ T cells displayed lower expression of exhaustion markers as well as increased functionality upon restimulation. Treatment with anti-CCR8 mAb prevented de novo induction and suppressive function of Tregs without affecting CD8+ T cells. Initial studies explored a combinatorial regimen using anti-CCR8 mAb therapy and a Listeria monocytogenes (Lm)-based immunotherapy. Anti- CCR8 mAb therapy synergized with Lm-based immunotherapy to significantly delay growth of established tumors and prolong survival. Collectively, these findings identify CCR8 as a promising new target for tumor immunotherapy and provide a strong rationale for further development of this approach, either as a monotherapy or in combination with other immunotherapies. Statement of Significance Inhibition of CCR8 represents a promising new cancer immunotherapy strategy that modulates tumor- resident regulatory T cells to enhance antitumor immunity and prolong patient survival. 2 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 19, 2018; DOI: 10.1158/0008-5472.CAN-18-1119 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction Tumor-infiltrating CD4+Foxp3+ regulatory T cells (Tregs) are a major immune cell population that contribute to the establishment of an immunosuppressive tumor microenvironment (TME) (1-4). Infiltration of large numbers of Tregs into the tumors hamper the development of effective antitumor immunity (1-4) and is often associated with poor prognosis (2-5). Treg modulation strategies have been shown to increase anti-tumor immunity and reduce tumor burden in both preclinical and clinical settings (4-7). However, although these strategies have demonstrated enhanced antitumor immune responses, there are drawbacks, such as autoimmunity and specificity of targeting (2-4, 8-13). Because Tregs and activated effector lymphocytes both express surface molecules that can be used as therapeutic targets (e.g. anti-CD25), there is the potential for ablation of essential tumor-specific effector cells required to control tumor progression in these types of antibody mediated immunotherapies (13-14). Therefore, the development of a more effective approach to specifically and selectively target tumor-infiltrating Tregs is required. In both human and mouse, the chemokine receptor CCR8 is predominantly expressed on Tregs and on a small portion of Th2 cells, but not on Th1 cells (15-16). This subset of CD4+Foxp3+ Tregs expressing CCR8, (CCR8+ Tregs), has been demonstrated to be a major driver of immunosuppression and is critical for Treg function and suppression (15-17). More recently, two independent studies characterizing the distinct molecular signature of tumor-resident Tregs demonstrated that CCR8 was a specific marker selectively upregulated by tumor-resident Tregs in several tumor types (18-19). Interestingly, Plitas, et al. highlighted that high expression of CCR8+ Tregs was associated with poor prognosis in breast cancer patients (19). These studies suggest CCR8 may be an effective therapeutic target by which to selectively and specifically modulate a subpopulation of tumor-resident Tregs in the TME to augment antitumor immunity. The extent of antitumor effects resultant from targeting CCR8 and its potential as a promising cancer immunotherapy remains to be determined. Here, we demonstrate that an anti-CCR8 (αCCR8) blocking monoclonal antibody (mAb) treatment impaired the suppressive character of the TME, markedly reducing tumor-resident CCR8+ Tregs. Ultimately, this contribution enhanced effector T cell and antitumor immunity in the CT26 colorectal tumor model. Furthermore, our study demonstrates that αCCR8 therapy synergizes with an Lm-based immunotherapy to enhance optimal antitumor efficacy. Collectively, these novel findings highlight CCR8 as a promising new target for cancer immunotherapy and its potential for broad clinical application. 3 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 19, 2018; DOI: 10.1158/0008-5472.CAN-18-1119 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Materials and Methods Mice and tumor cell lines Female, 6-8 week old BALB/c and C57BL/6 (B6) mice were purchased from Jackson Laboratories. All mouse procedures were performed in accordance with protocols approved by Advaxis Immunotherapies IACUC. The CT26.WT (CRL-2638) were purchased from the American Type Culture Collection (ATCC) and authenticated by ATCC using COI analysis. The MC38 colon carcinoma cells were purchased from Kerafast and were authenticated by Simple Sequence Length Polymorphism (SSLP). CT26 cells were maintained in RPMI medium supplemented with 10% fetal bovine serum (FBS) in a humidified atmosphere with 5% CO2 at 37°C. The MC38 cell lines were maintained in DMEM medium supplemented with 10% FBS. All cell lines were passaged twice prior to storage and thawed and passaged twice prior to implantation for all described tumor experiments. All cell lines were determined to be free of Mycoplasma (Sigma-Aldrich). Tumor models, tumor vaccine, and αCCR8 treatment CT26 (300,000) and MC38 (300,000) cells were implanted subcutaneously (s.c.) in the right flank of mice. Tumor vaccine consisted of LmddA-274 (1x108) or AH1-21mer (1x108) diluted in PBS. Details of plasmid construction are described in the supplemental material and methods. For therapeutic treatments, mice were treated with intraperitoneal (i.p.) injections of purified αCCR8 (4 µg; clone: SA214G2; Biolegend) and control antibody (rat IgG2b,k, Clone RTK4530; Biolegend). Tumor growth was monitored using electronic calipers and calculated according to the formula: V = (length x width2)/2. Mice were immunized with 200 µl of vaccine intravenous (i.v.) on day +12 and +19 post-tumor implantation. To analyze tumor-infiltrating T cells upon vaccine/anti-CCR8 combination treatment, tumors from all groups were harvested for analysis +22 days post-tumor implantation. For survival experiments, mice were euthanized when tumor size reached 2000 mm3 or when tumors become necrotic. In Vitro Assays Treg Induction: Naïve 2 x 106 CD4+ T cells were isolated from spleens of BALB/c mice through negative selection using the StemCell EasySep Mouse Naïve CD4+ T Cell Isolation Kit (Cat. 19765) according to manufacturer’s instructions. The cells were seeded on plates pretreated with 2 µg/ml αCD3. Cells were incubated for 3 to 5 days with αCD28 (1µg/mL), IL-2 (100U/mL), and TGF-β1 at 5ng/ml. The percent of converted Tregs was evaluated by flow cytometry on the third day. For inhibition of conversion, αCCR8 was added at 10 µg/ml. 4 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 19, 2018; DOI: 10.1158/0008-5472.CAN-18-1119 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Proliferation of CD8+ and CD4+ T cells from αCCR8 treated mice: The 2 x 106 CD8+ and CD4+ T cells were isolated from spleens of BALB/c mice through negative selection using the StemCell EasySep Mouse CD8+ or Naïve CD4+ T Cell Isolation Kits (Cat. 19853; Cat. 19765), respectively. To measure proliferation, both CD8+ and CD4+ T cells were stained with CFSE at a concentration of 0.5µM for 10 minutes. Cells
Recommended publications
  • CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L
    CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L. McCully, Kristin Ladell, Robert Andrews, Rhiannon E. Jones, Kelly L. Miners, Laureline Roger, This information is current as Duncan M. Baird, Mark J. Cameron, Zita M. Jessop, Iain S. of September 24, 2021. Whitaker, Eleri L. Davies, David A. Price and Bernhard Moser J Immunol published online 2 February 2018 http://www.jimmunol.org/content/early/2018/02/02/jimmun Downloaded from ol.1701377 Supplementary http://www.jimmunol.org/content/suppl/2018/02/02/jimmunol.170137 Material 7.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 2, 2018, doi:10.4049/jimmunol.1701377 The Journal of Immunology CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin Michelle L.
    [Show full text]
  • G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
    npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations.
    [Show full text]
  • Structural Basis of the Activation of the CC Chemokine Receptor 5 by a Chemokine Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401117; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist One-sentence summary: The structure of CCR5 in complex with the chemokine agonist [6P4]CCL5 and the heterotrimeric Gi protein reveals its activation mechanism Authors: Polina Isaikina1, Ching-Ju Tsai2, Nikolaus Dietz1, Filip Pamula2,3, Anne Grahl1, Kenneth N. Goldie4, Ramon Guixà-González2, Gebhard F.X. Schertler2,3,*, Oliver Hartley5,*, 4 1,* 2,* 1,* Henning Stahlberg , Timm Maier , Xavier Deupi , and Stephan Grzesiek Affiliations: 1 Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland 2 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 3 Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland 4 Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland 5 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva *Address correspondence to: Stephan Grzesiek Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, CH-4056 Basel, Switzerland Phone: ++41 61 267 2100 FAX: ++41 61 267 2109 Email: [email protected] Xavier Deupi Email: [email protected] Timm Maier Email: [email protected] Oliver Hartley Email: [email protected] Gebhard F.X. Schertler Email: [email protected] Keywords: G protein coupled receptor (GPCR); CCR5; chemokines; CCL5/RANTES; CCR5- gp120 interaction; maraviroc; HIV entry; AIDS; membrane protein structure; cryo-EM; GPCR activation.
    [Show full text]
  • Th2 Effector Lymphocytes Regulatory and + Cells Enriched for FOXP3
    CCR8 Expression Identifies CD4 Memory T Cells Enriched for FOXP3 + Regulatory and Th2 Effector Lymphocytes This information is current as Dulce Soler, Tobias R. Chapman, Louis R. Poisson, Lin of September 27, 2021. Wang, Javier Cote-Sierra, Mark Ryan, Alice McDonald, Sunita Badola, Eric Fedyk, Anthony J. Coyle, Martin R. Hodge and Roland Kolbeck J Immunol 2006; 177:6940-6951; ; doi: 10.4049/jimmunol.177.10.6940 Downloaded from http://www.jimmunol.org/content/177/10/6940 References This article cites 68 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/177/10/6940.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCR8 Expression Identifies CD4 Memory T Cells Enriched for FOXP3؉ Regulatory and Th2 Effector Lymphocytes Dulce Soler,1 Tobias R.
    [Show full text]
  • Use of Alternate Coreceptors on Primary Cells by Two HIV-1 Isolates
    Edinburgh Research Explorer Use of alternate coreceptors on primary cells by two HIV-1 isolates Citation for published version: Cilliers, T, Willey, S, Sullivan, WM, Patience, T, Pugach, P, Coetzer, M, Papathanasopoulos, M, Moore, JP, Trkola, A, Clapham, P & Morris, L 2005, 'Use of alternate coreceptors on primary cells by two HIV-1 isolates', Virology, vol. 339, no. 1, pp. 136-44. https://doi.org/10.1016/j.virol.2005.05.027 Digital Object Identifier (DOI): 10.1016/j.virol.2005.05.027 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Virology Publisher Rights Statement: Copyright 2005 Elsevier Inc. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 Virology 339 (2005) 136 – 144 www.elsevier.com/locate/yviro Use of alternate coreceptors on primary cells by two HIV-1 isolates Tonie Cilliersa, Samantha Willeyb, W. Mathew Sullivanb, Trudy Patiencea, Pavel Pugachc, Mia Coetzera, Maria Papathanasopoulosa,1, John P.
    [Show full text]
  • Yabe R Et Al, 2014.Pdf
    International Immunology, Vol. 27, No. 4, pp. 169–181 © The Japanese Society for Immunology. 2014. All rights reserved. doi:10.1093/intimm/dxu098 For permissions, please e-mail: [email protected] Advance Access publication 25 October 2014 CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes Rikio Yabe1,2,3,*, Kenji Shimizu1,2,*, Soichiro Shimizu2, Satoe Azechi2, Byung-Il Choi2, Katsuko Sudo2, Sachiko Kubo1,2, Susumu Nakae2, Harumichi Ishigame2, Shigeru Kakuta4 and Yoichiro Iwakura1,2,3,5 1Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan 2Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, University of Tokyo (IMSUT), Minato-ku, Tokyo 108-8639, Japan 3Medical Mycology Research Center, Chiba University, Inohana Chuo-ku, Chiba 260-8673, Japan RTICLE 4 A Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, FEATURED Tokyo 113-8657, Japan 5Core Research for Evolutional and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan Correspondence to: Y. Iwakura; E-mail: [email protected] *These authors equally contributed to this work. Received 2 September 2014, accepted 17 October 2014 Abstract Allergic contact dermatitis (ACD) is a typical occupational disease in industrialized countries. Although various cytokines and chemokines are suggested to be involved in the pathogenesis of ACD, the roles of these molecules remain to be elucidated. CC chemokine receptor 8 (CCR8) is one such molecule, of which expression is up-regulated in inflammatory sites of ACD patients.
    [Show full text]
  • Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them?
    cancers Review Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them? Justine Cinier 1,†, Margaux Hubert 1,†, Laurie Besson 1, Anthony Di Roio 1 ,Céline Rodriguez 1, Vincent Lombardi 2, Christophe Caux 1,‡ and Christine Ménétrier-Caux 1,*,‡ 1 University of Lyon, Claude Bernard Lyon 1 University, INSERM U-1052, CNRS 5286 Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; [email protected] (J.C.); [email protected] (M.H.); [email protected] (L.B.); [email protected] (A.D.R.); [email protected] (C.R.); [email protected] (C.C.) 2 Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France; [email protected] * Correspondence: [email protected] † Co-first authorship. ‡ Co-last authorship. Simple Summary: The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted Citation: Cinier, J.; Hubert, M.; depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Besson, L.; Di Roio, A.; Rodriguez, C.; Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic Lombardi, V.; Caux, C.; strategies developed to block these mechanisms.
    [Show full text]
  • Anti-Γδ TCR Antibody-Expanded Γδ T Cells
    Cellular & Molecular Immunology (2012) 9, 34–44 ß 2012 CSI and USTC. All rights reserved 1672-7681/12 $32.00 www.nature.com/cmi RESEARCH ARTICLE Anti-cd TCR antibody-expanded cd T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies Jianhua Zhou, Ning Kang, Lianxian Cui, Denian Ba and Wei He Cell-based immunotherapy for lymphoid malignancies has gained increasing attention as patients develop resistance to conventional treatments. cd T cells, which have major histocompatibility complex (MHC)-unrestricted lytic activity, have become a promising candidate population for adoptive cell transfer therapy. We previously established a stable condition for expanding cd T cells by using anti-cd T-cell receptor (TCR) antibody. In this study, we found that adoptive transfer of the expanded cd T cells to Daudi lymphoma-bearing nude mice significantly prolonged the survival time of the mice and improved their living status. We further investigated the characteristics of these antibody-expanded cd T cells compared to the more commonly used phosphoantigen-expanded cd T cells and evaluated the feasibility of employing them in the treatment of lymphoid malignancies. Slow but sustained proliferation of human peripheral blood cd T cells was observed upon stimulation with anti-cd TCR antibody. Compared to phosphoantigen-stimulated cd T cells, the antibody-expanded cells manifested similar functional phenotypes and cytotoxic activity towards lymphoma cell lines. It is noteworthy that the anti-cd TCR antibody could expand both the Vd1 and Vd2 subsets of cd T cells. The in vitro-expanded Vd1 T cells displayed comparable tumour cell-killing activity to Vd2 T cells.
    [Show full text]
  • Antagonism of Chemokine Receptor CCR8 Is Ineffective in a Primate
    Asthma Thorax: first published as 10.1136/thoraxjnl-2012-203012 on 1 March 2013. Downloaded from ORIGINAL ARTICLE Antagonism of chemokine receptor CCR8 is ineffective in a primate model of asthma Lin Wang,1,2 Tracy J Jenkins,1,3 Mingshi Dai,1,4 Wei Yin,1,5 Jacqueline C Pulido,1,6 Elise LaMantia-Martin,7 Martin R Hodge,1,8 Timothy Ocain,1,9 Roland Kolbeck1,10 ▸ Additional material is ABSTRACT published online only. To view Background Expression of the T-cell-associated Key messages please visit the journal online (http://dx.doi.org/10.1136/ chemokine receptor CCR8 and its ligand CCL1 have been demonstrated to be elevated in patients with thoraxjnl-2012-203012). What is the key question? asthma. CCR8 deficiency or inhibition in models of For numbered affiliations see ▸ Does CCR8 inhibition efficiently ameliorate allergic airway disease in mice resulted in conflicting end of article inflammation and airway function in a primate data. model of asthma? Correspondence to Objective To investigate the effects of a selective small What is the bottom line? Dr Roland Kolbeck, Department molecule CCR8 inhibitor (ML604086) in a primate model fl ▸ Inhibition of CCR8 with a small molecule of Respiratory, In ammation of asthma. and Autoimmunity, antagonist did not result in improvements of Methods ML604086 and vehicle were administered by MedImmune, LLC, One lung inflammation and lung function, although MedImmune Way, intravenous infusion to 12 cynomolgus monkeys during complete inhibition of CCR8 on peripheral Gaithersburg, MD 20878, USA; airway challenge with Ascaris suum. Samples were blood T-cells was achieved. [email protected] collected throughout the study to measure Why read on? pharmacokinetics (PK) and systemic CCR8 inhibition, as Received 17 November 2012 ▸ This study describes a dispensable role of well as inflammation, T helper 2 (Th2) cytokines and Revised 29 January 2013 chemokine receptor CCR8 in allergic airway Accepted 1 February 2013 mucus in bronchoalveolar lavage (BAL).
    [Show full text]
  • The Receptor for TCA-3 Molecular Characterization of Murine CCR8 As
    Identification of CCR8 as the Specific Receptor for the Human β-Chemokine I-309: Cloning and Molecular Characterization of Murine CCR8 as the Receptor for TCA-3 This information is current as of September 23, 2021. Iñigo Goya, Julio Gutiérrez, Rosa Varona, Leonor Kremer, Angel Zaballos and Gabriel Márquez J Immunol 1998; 160:1975-1981; ; http://www.jimmunol.org/content/160/4/1975 Downloaded from References This article cites 51 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/160/4/1975.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Identification of CCR8 as the Specific Receptor for the Human b-Chemokine I-309: Cloning and Molecular Characterization of Murine CCR8 as the Receptor for TCA-31 In˜igo Goya, Julio Gutie´rrez, Rosa Varona, Leonor Kremer, Angel Zaballos, and Gabriel Ma´rquez2 Chemokine receptor-like 1 (CKR-L1) was described recently as a putative seven-transmembrane human receptor with many of the structural features of chemokine receptors.
    [Show full text]
  • CXCR6 Regulates Localization of Tissue-Resident Memory CD8 T Cells to the Airways
    Published Online: 26 September, 2019 | Supp Info: http://doi.org/10.1084/jem.20181308 Downloaded from jem.rupress.org on September 26, 2019 ARTICLE CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways Alexander N. Wein1*, Sean R. McMaster1*, Shiki Takamura2*, Paul R. Dunbar1, Emily K. Cartwright1, Sarah L. Hayward1, Daniel T. McManus1, Takeshi Shimaoka3, Satoshi Ueha3, Tatsuya Tsukui4, Tomoko Masumoto2, Makoto Kurachi5, Kouji Matsushima3, and Jacob E. Kohlmeier1,6 Resident memory T cells (TRM cells) are an important first-line defense against respiratory pathogens, but the unique contributions of lung TRM cell populations to protective immunity and the factors that govern their localization to different compartments of the lung are not well understood. Here, we show that airway and interstitial TRM cells have distinct effector functions and that CXCR6 controls the partitioning of TRM cells within the lung by recruiting CD8 TRM cells to the −/− airways. The absence of CXCR6 significantly decreases airway CD8 TRM cells due to altered trafficking of CXCR6 cells within the lung, and not decreased survival in the airways. CXCL16, the ligand for CXCR6, is localized primarily at the respiratory epithelium, and mice lacking CXCL16 also had decreased CD8 TRM cells in the airways. Finally, blocking CXCL16 inhibited the steady-state maintenance of airway TRM cells. Thus, the CXCR6/CXCL16 signaling axis controls the localization of TRM cells to different compartments of the lung and maintains airway TRM cells. Introduction Over the past decade, resident memory T cells (TRM cells) have (Campbell et al., 1999; Schaerli et al., 2004; Sigmundsdottir been recognized as a distinct population from either central or et al., 2007).
    [Show full text]
  • Evidence for Involvement of CCR8 by Pathogenic CD4 T Cells in Type 1
    Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL1 This information is current as of September 25, 2021. Joseph Cantor and Kathryn Haskins J Immunol 2007; 179:5760-5767; ; doi: 10.4049/jimmunol.179.9.5760 http://www.jimmunol.org/content/179/9/5760 Downloaded from References This article cites 36 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/9/5760.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL11 Joseph Cantor and Kathryn Haskins2 Adoptive transfer of diabetogenic CD4 Th1 T cell clones into young NOD or NOD.scid recipients rapidly induces onset of diabetes and also provides a system for analysis of the pancreatic infiltrate.
    [Show full text]