Calls Are Closer Than Others
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Joonhong Ahn · Cathryn Carson Mikael Jensen · Kohta Juraku Shinya Nagasaki · Satoru Tanaka Editors
Joonhong Ahn · Cathryn Carson Mikael Jensen · Kohta Juraku Shinya Nagasaki · Satoru Tanaka Editors Reflections on the Fukushima Daiichi Nuclear Accident Toward Social-Scientific Literacy and Engineering Resilience Reflections on the Fukushima Daiichi Nuclear Accident Joonhong Ahn · Cathryn Carson · Mikael Jensen Kohta Juraku · Shinya Nagasaki · Satoru Tanaka Editors Reflections on the Fukushima Daiichi Nuclear Accident Toward Social-Scientific Literacy and Engineering Resilience Editors Joonhong Ahn Shinya Nagasaki Department of Nuclear Engineering McMaster University University of California Hamilton, ON Berkeley, CA Canada USA Satoru Tanaka Cathryn Carson Department of Nuclear Engineering Department of History and Management University of California University of Tokyo Berkeley, CA Bunkyo-ku USA Japan Mikael Jensen Sundbyberg Sweden Kohta Juraku Department of Humanities and Social Sciences Tokyo Denki University Adachi-ku, Tokyo Japan ISBN 978-3-319-12089-8 ISBN 978-3-319-12090-4 (eBook) DOI 10.1007/978-3-319-12090-4 Library of Congress Control Number: 2014956647 Springer Cham Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and The Author(s) 2015. The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
Security Operational Skills 2 (Tracing).P65
Unit - 4 K Operating Skill for handling Natural Disasters Structure 4.1 Objectives 4.2 Introduction 4.3 Operating Skill for natural and nuclear disasters 4.4 Accident Categories 4.5 Nuclear and radiation accidents and incidents 4.6 Geological disasters 4.7 Operating Skills for handling Mines and other Explosive Devices 4.8 Operating Skills for handing hijacking situation (other than an airline hijacking 4.9 Operating skills for antivehicle theft operations 4.10 Operating skills for facing a kidnapping or hostage situation 4.11 Operating Skill for handling coal mines and other explosive devices 4.12 Hostage Rights : Law and Practice in Throes of Evolution 4.12.1 Terminology 4.13 Relative Value of Rights 4.14 Conflict of Rights and Obligations 4.15 Hong Kong mourns victims of bus hijacking in the Philoppines 4.16 Rules for Successful Threat Intelligence Teams 4.16.1 Tailor Your Talent 4.16.2 Architect Your Infrastructure 4.16.3 Enable Business Profitability 4.16.4 Communicate Continuously 4.17 Construction Safety Practices 4.17.1 Excavation 4.17.2 Drilling and Blasting 4.17.3 Piling and deep foundations 234 4.18 Planning 4.18.1 Steps in Planning Function 4.18.2 Characteristics of planning 4.18.3 Advantages of planning 4.18.4 Disadvantages of planning 4.1 Objectives The following is a list of general objectives departments should consider when creating an Information Disaster Prevention and Recovery Plan: O Ensure the safety of all employees and visitors at the site/facility O Protect vital information and records O Secure business sites -
Medical Association for Prevention of War BRIEFING PAPER
Medical Association for Prevention of War BRIEFING PAPER NUCLEAR POWER AND PUBLIC HEALTH By Peter Karamoskos MBBS, FRANZCR1 May 2010 “… there is a linear dose-response relationship between exposure to ionizing radiation and the development of solid cancers in humans. It is unlikely that there is a threshold below which cancers are not induced.” – National Academy of Science, BEIR VII report, 2006 “We need to develop a very firm commitment to the elimination of nuclear power as a source of energy on the earth.” – Russell Train, former US Environmental Protection Agency administrator, 1977 “[t]he [economic] failure of the U.S. nuclear power program ranks as the largest managerial disaster in business history, a disaster on a monumental scale.” – Forbes, 1985 1 Nuclear Radiologist; Treasurer, Medical Association for the Prevention of War (MAPW) & Treasurer, International Campaign for the Abolition of Nuclear Weapons (ICAN); Public representative, Radiation Health Committee, Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) [For informational purposes and does not represent an endorsement by ARPANSA of this document.] Medical Association for Prevention of War Introduction without heavy tax-payer subsidies and loan The public health implications for a resurgence of guarantees. Throughout this period however, nuclear power appear to have taken a subordinate public health concerns increased on a backdrop of position to the economic and global warming reactor safety concerns and the effects of ionising arguments that the industry has advanced to radiation on the surrounding populations, with ten justify its expansion. The purpose of this essay core meltdowns in various nuclear reactors, therefore is several-fold: to review the scientific including several in nuclear power reactors, evidence for public health impacts of nuclear culminating in the Chernobyl disaster of 1986. -
Environmental Critiques of Nuclear Energy William Hummel Pomona College
Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2012 Environmental Critiques of Nuclear Energy William Hummel Pomona College Recommended Citation Hummel, William, "Environmental Critiques of Nuclear Energy" (2012). Pomona Senior Theses. Paper 58. http://scholarship.claremont.edu/pomona_theses/58 This Open Access Senior Thesis is brought to you for free and open access by the Pomona Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Environmental Critiques of Nuclear Energy William Yoshida Hummel In partial fulfillment of a Bachelor of Arts Degree in Environmental Analysis, 2011-12 academic year, Pomona College, Claremont, California Readers: Professor David Menefee-Libey Professor Rick Hazlett Professor Susan McWilliams 1 Table of Contents Acknowledgements 3 Chapter 1: A New Energy Paradigm 4 Chapter 2: History of Nuclear Energy 10 Pre-1940: The foundations of nuclear energy 10 1940-1945: World War II and the Manhattan Project 13 1950-1957: Nuclear technology and the beginning of the arms race 17 1957-1979: The golden age of nuclear construction 19 1979-1986: Nuclear accidents at Three Mile Island and Chernobyl 22 1986-2011: The modern nuclear era 27 2011: Fukushima and the future of nuclear energy 30 Chapter 3: The Environmentalist’s Perspective 38 Concern #1: Uranium mining 43 Concern #2: Radiation and meltdowns 56 Concern #3: Waste disposal 73 Concern #4: National security 83 Chapter 4: Emerging Nuclear Technology 95 Chapter 5: Moving Forward 106 2 Acknowledgments To David Menefee-Libey, who tried to warn me, but was still willing to help even after I ignored him. -
Learning from Fukushima: Nuclear Power in East Asia
LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA EDITED BY PETER VAN NESS AND MEL GURTOV WITH CONTRIBUTIONS FROM ANDREW BLAKERS, MELY CABALLERO-ANTHONY, GLORIA KUANG-JUNG HSU, AMY KING, DOUG KOPLOW, ANDERS P. MØLLER, TIMOTHY A. MOUSSEAU, M. V. RAMANA, LAUREN RICHARDSON, KALMAN A. ROBERTSON, TILMAN A. RUFF, CHRISTINA STUART, TATSUJIRO SUZUKI, AND JULIUS CESAR I. TRAJANO Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Learning from Fukushima : nuclear power in East Asia / Peter Van Ness, Mel Gurtov, editors. ISBN: 9781760461393 (paperback) 9781760461409 (ebook) Subjects: Nuclear power plants--East Asia. Nuclear power plants--Risk assessment--East Asia. Nuclear power plants--Health aspects--East Asia. Nuclear power plants--East Asia--Evaluation. Other Creators/Contributors: Van Ness, Peter, editor. Gurtov, Melvin, editor. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press. Cover image: ‘Fukushima apple tree’ by Kristian Laemmle-Ruff. Near Fukushima City, 60 km from the Fukushima Daiichi Nuclear Power Plant, February 2014. The number in the artwork is the radioactivity level measured in the orchard—2.166 microsieverts per hour, around 20 times normal background radiation. This edition © 2017 ANU Press Contents Figures . vii Tables . ix Acronyms and abbreviations . -
Nuclear Power, Radiation, and Disease
3 Nuclear Power, Radiation, and Disease Few, if any, estimates of the costs of nuclear energy take into account the health costs to the human race. Even when nuclear power plants are operating normally, these costs are not insignifi- cant. Miners, workers, and residents in the vicinity of the mining and milling functions, and workers involved in the enrichment processes necessary to create nuclear fuel are at risk for exposure to unhealthy amounts of radiation and have increased incidences of cancer and related diseases as a result. Routine and accidental ra- dioactive releases at nuclear power plants as well as the inevitable leakage of radioactive waste will contaminate water and food chains and expose humans and animals now and for generations to come. Accidents such as Three Mile Island and Chernobyl condemn thou- sands if not millions to pay the cost of nuclear power with their own health. Understanding the nature of radiation is critical to under- standing the health impacts of nuclear energy. RADIATION AND EVOLUTION Billions of years ago the earth was relatively radioactive and hostile to life, as radiation emanated both from the terrestrial plane—rocks and soil—and from powerful solar radiation in space. The solar ef- fect was much more intense at that time, because the ozone layer 39 40 Helen Caldicott that filters out the carcinogenic ultraviolet radiation from the sun was almost non-existent. Over billions of years, as plants developed and evolved, they generated oxygen (O2) from photosynthesis, which rose up through the lower layers of atmosphere into the stratosphere, where it was converted to ozone (O3) by ultraviolet light. -
Benefit-Function of Two- Identical Cold Standby Nuclear Reactors System Subject to Failure Due to Radioactivity Or Overheating, Steam Explosion, Fire, and Meltdown
International Journal on Mechanical Engineering and Robotics (IJMER) ________________________________________________________________________________________________ Benefit-Function of Two- Identical Cold Standby Nuclear Reactors System subject to failure due to radioactivity or Overheating, steam explosion, fire, and meltdown Ashok Kumar Saini BLJS COLLEGE, TOSHAM (BHIWANI) HARYANA INDIA Email ID [email protected] The accident killed 30 people directly and damaged Abstract- A nuclear and radiation accident is defined by approximately $7 billion of property. A study published in the International Atomic Energy Agency as "an event that 2005 estimates that there will eventually be up to 4,000 has led to significant consequences to people, the additional cancer deaths related to the accident among environment or the facility." Examples include lethal those exposed to significant radiation levels. Radioactive effects to individuals, large radioactivity release to fallout from the accident was concentrated in areas of the environment, or reactor core melt." The prime Belarus, Ukraine and Russia. Approximately 350,000 example of a "major nuclear accident" is one in which people were forcibly resettled away from these areas soon a reactor core is damaged and significant amounts after the accident. of radioactivity are released, such as in the Chernobyl disaster in 1986. Benjamin K. Sovacool has reported that worldwide there have been 99 accidents at nuclear power plants from 1952 The impact of nuclear accidents has been a topic of debate to 2009 (defined as incidents that either resulted in the loss practically since the first nuclear reactors were constructed of human life or more than US$50,000 of property damage, in 1954. It has also been a key factor in public concern the amount the US federal government uses to define about nuclear facilities. -
Germany's Nuclear Phase-Out
Germany’s nuclear phase-out: Impacts on electricity prices, CO2 emissions and on Europe Brigitte Knopf1,a, Michael Pahle a, Hendrik Kondziellab, Fabian Joas a, Ottmar Edenhofer a, Thomas Bruckner b aPotsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, 14412 Potsdam, Germany bInstitute for Infrastructure and Resources Management (IIRM) at the University Leipzig, Grimmaische Straße 12, 04109 Leipzig, Germany Abstract Following the nuclear meltdown in Fukushima Daiichi, the German parliament decided in summer 2011 to phase-out nuclear power by 2022. We investigate which influence this decision has on national and European electricity prices and on CO2 emissions and to which extent this decision is influencing European energy policy. A model-based analysis of electricity prices and CO2 emissions let us conclude that emissions can be kept at levels that are in line with the national reduction targets. Electricity prices for consumers will hardly be affected by the decision on the phase-out, whereas those for industry will increase due to the phase-out. A comparison with results from other studies shows that some model assumptions, e.g. the gas price, have a much larger influence on the electricity price than the nuclear phase-out itself. An empirical analysis reveals that the effect on the electricity prices for other European countries was only short-term but that a long-term influence of the German nuclear phase-out on the prices cannot be determined yet. We argue that for avoiding an excessive increase in costs the transformation of the German energy system requires further European coordination beyond the current level. -
Consequence Management: Evaluating and Developing International Responses to Nuclear and Radiological Disasters
City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2015 Consequence Management: Evaluating and Developing International Responses to Nuclear and Radiological Disasters Timothy Taylor CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/365 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Consequence Management: Evaluating and Developing International Responses to Nuclear and Radiological Disasters By Timothy Taylor May 2015 Master’s Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of International Relations (MA) at the City College of New York Advisor: Jean Krasno, PhD 1 Acknowledgments This research could not have happened without the inspiration and help of so many people. First and foremost, I want to acknowledge my academic and thesis advisor, Dr. Jean Krasno, for being a driving force for this research, as well as for my academic and professional success. Her level of knowledge and expertise within the field of International Relations is only surpassed by her love and compassion for others, especially those whom she inspires through her teaching. I would also like to acknowledge Dr. Barry J. Balleck for pushing me as an undergraduate student to pursue research and a graduate degree. Dr. Balleck helped me to hone my research and writing skills in International Studies, and to analyze critical global issues as a policy-maker. I will always value my friendship with him and the Balleck family. -
Supercritical CO2, Molten Salt Could Stop a Nuclear Meltdown Before It Begins
ENERGY Supercritical CO2, molten salt could stop a nuclear meltdown before it begins 24 February 2017 by Steve Gillman A glass scale model of a nuclear power plant in Essen, Germany, will help scientists test ways to reduce the risk of meltdowns. Image courtesy of sCO2-HeRo Fukushima, Chernobyl, Three Mile Island - all three nuclear disasters were caused by human error, in one form or another. Now researchers are working on ways to ensure nuclear power plants remain safe – by making safety systems that can operate automatically. A nuclear meltdown happens when the reactor's residual power exceeds the heat that can be removed by the cooling systems. The core - where the nuclear reactions take place - can’t withstand the rising temperature and begins to melt, allowing radioactive materials to possibly escape into the environment. 1 Over the last few decades, public fears in some countries have prevented more nuclear power from See also entering the grid. However, if the threat of a meltdown Cutting out the middleman in can be removed, some scientists think we should renewable energy reconsider tapping into this carbon-free source of energy. Welcome to the post-carbon future They are working towards different ways to eliminate Positive energy homes a the risk of nuclear meltdowns, with automatic methods plus for climate change fight such as a heat removal system using so-called supercritical CO2, a state where the chemical has EU, North Africa green properties of both a gas and a liquid, and the use of energy tie-up draws closer - Claude Ayache molten salt. -
Fukushima Daiichi: the Path to Nuclear Meltdown
FXB / DPRI Case Series 2 January 2016 Fukushima Daiichi: The Path to Nuclear Meltdown LINDSEY GARRISON SATCHIT BALSARI JENNIFER LEANING This case is available for non-commercial use with permission of the Harvard FXB Center for Health and Human Rights. To apply, please provide your name, title, institutional affiliation, contact information, intended target audience, and the class, course or degree program that it will be used in. There are no fees associated with the use of this course. Please email [email protected] with “Permission to use case study” in the subject line. Fukushima Daiichi: The Path to Nuclear Meltdown On March 11, 2011, Japan suffered an unprecedented triple disaster. A 9.0 M earthquake occurred off the northeastern coast of Japan, triggering a large tsunami that rose to a height of over 30 meters, and traveled as far as 10 kilometers inland. The earthquake and tsunami damaged Japan’s oldest nuclear power plant, setting off a chain of events culminating in a nuclear accident. Japan is no stranger to earthquakes. Over the years Japan has instituted sweeping changes in its mitigation and response capacity. Buildings, bridges, and rail lines are designed to be earthquake resistant; communities regularly participate in disaster drills; and coastal populations are protected from tsunamis by high sea walls. Many of these were adopted after the Kobe earthquake in 1995, where over 90 percent of deaths were attributed to crush injuries from building destruction (1). In addition, the country’s nuclear infrastructure was closely monitored by a collection of regulatory agencies and assumed to be safe. -
Nuclear Power Plant Meltdown
Three Mile Island, USA Nuclear power plant meltdown The most infamous nuclear reactor accident in U.S. history occurred at the Three Mile Island nuclear plant in March 1979. Equipment malfunction, design-related problems and human error led to a partial meltdown of the reactor core and the release of vast amounts of radioac- tive gas and liquid. To this day, e ective lobbying and cover-up e orts by the nuclear industry have prevented a meaningful scienti c analysis of the e ects on health and the environment. History The Three Mile Island nuclear power plant is located roughly 16 km from Harrisburg, Pennsylvania and was commissioned in 1978. More than two million people lived within 80 km of the plant. On March 28, 1979, who warned publicly of a signifi cant rise in hypothy- the failure of the plant’s cooling system led to the worst roidism and infant deaths after the disaster, was fi red 2 nuclear catastrophe before Chernobyl. An emergency immediately. Nuclear specialist Steven Wing of the valve was opened to relieve pressure, accidentally re- University of North Carolina, Chapel Hill alleged that leasing large quantities of coolant fl uid. This resulted “a manipulation of research” had taken place: A court in a severe overheating of the reactor core and a melt- order prohibited upper limit or worst case estimates of down of the radioactive fuel rods. The containment releases of radioactivity or population doses if these vessel held, but for several days, signifi cant amounts had the potential to harm the interests of the nuclear 3 of radioactivity were released into air, water and soil, industry.